MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Visualization version   GIF version

Theorem oaord 7798
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 7797 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
213adant1 1125 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
3 oveq2 6822 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵)))
5 oaordi 7797 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
653adant2 1126 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
74, 6orim12d 919 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
87con3d 148 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1074 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On))
10 ancom 465 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ↔ (𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)))
11 anandi 906 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
129, 10, 113bitri 286 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
13 oacl 7786 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +𝑜 𝐴) ∈ On)
14 eloni 5894 . . . . . . 7 ((𝐶 +𝑜 𝐴) ∈ On → Ord (𝐶 +𝑜 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → Ord (𝐶 +𝑜 𝐴))
16 oacl 7786 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +𝑜 𝐵) ∈ On)
17 eloni 5894 . . . . . . 7 ((𝐶 +𝑜 𝐵) ∈ On → Ord (𝐶 +𝑜 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐶 +𝑜 𝐵))
1915, 18anim12i 591 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
2012, 19sylbi 207 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
21 ordtri2 5919 . . . 4 ((Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
23 eloni 5894 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
24 eloni 5894 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
2523, 24anim12i 591 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1127 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 5919 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 283 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) → 𝐴𝐵))
302, 29impbid 202 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  Ord word 5883  Oncon0 5884  (class class class)co 6814   +𝑜 coa 7727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-oadd 7734
This theorem is referenced by:  oacan  7799  oaword  7800  oaord1  7802  oa00  7810  oalimcl  7811  oaass  7812  odi  7830  oneo  7832  omeulem1  7833  omeulem2  7834  oeeui  7853  omxpenlem  8228  cantnflt  8744  cantnflem1d  8760  cantnflem1  8761
  Copyright terms: Public domain W3C validator