Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacgr Structured version   Visualization version   GIF version

Theorem oacgr 25944
 Description: Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
oacgr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
oacgr.2 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
oacgr.3 (𝜑𝐵𝐴)
oacgr.4 (𝜑𝐵𝐶)
oacgr.5 (𝜑𝐵𝐷)
oacgr.6 (𝜑𝐵𝐹)
Assertion
Ref Expression
oacgr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem oacgr
StepHypRef Expression
1 dfcgra2.p . 2 𝑃 = (Base‘𝐺)
2 dfcgra2.i . 2 𝐼 = (Itv‘𝐺)
3 dfcgra2.g . 2 (𝜑𝐺 ∈ TarskiG)
4 eqid 2771 . 2 (hlG‘𝐺) = (hlG‘𝐺)
5 dfcgra2.a . 2 (𝜑𝐴𝑃)
6 dfcgra2.b . 2 (𝜑𝐵𝑃)
7 dfcgra2.c . 2 (𝜑𝐶𝑃)
8 oacgr.3 . . . 4 (𝜑𝐵𝐴)
98necomd 2998 . . 3 (𝜑𝐴𝐵)
10 oacgr.4 . . 3 (𝜑𝐵𝐶)
111, 2, 3, 4, 5, 6, 7, 9, 10cgraswap 25933 . 2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
12 dfcgra2.d . 2 (𝜑𝐷𝑃)
13 dfcgra2.f . 2 (𝜑𝐹𝑃)
14 dfcgra2.m . . 3 = (dist‘𝐺)
15 oacgr.6 . . . . 5 (𝜑𝐵𝐹)
1615necomd 2998 . . . 4 (𝜑𝐹𝐵)
171, 2, 3, 4, 13, 6, 5, 16, 8cgraswap 25933 . . 3 (𝜑 → ⟨“𝐹𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐹”⟩)
18 oacgr.2 . . . 4 (𝜑𝐵 ∈ (𝐶𝐼𝐹))
191, 14, 2, 3, 7, 6, 13, 18tgbtwncom 25604 . . 3 (𝜑𝐵 ∈ (𝐹𝐼𝐶))
20 oacgr.1 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
21 oacgr.5 . . 3 (𝜑𝐵𝐷)
221, 2, 14, 3, 13, 6, 5, 5, 6, 13, 7, 12, 17, 19, 20, 10, 21sacgr 25943 . 2 (𝜑 → ⟨“𝐶𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
231, 2, 3, 4, 5, 6, 7, 7, 6, 5, 11, 12, 6, 13, 22cgratr 25936 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   class class class wbr 4787  ‘cfv 6030  (class class class)co 6796  ⟨“cs3 13796  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  hlGchlg 25716  cgrAccgra 25920 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802  df-s3 13803  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkg 25573  df-cgrg 25627  df-leg 25699  df-hlg 25717  df-mir 25769  df-cgra 25921 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator