![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacan | Structured version Visualization version GIF version |
Description: Left cancellation law for ordinal addition. Corollary 8.5 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.) |
Ref | Expression |
---|---|
oacan | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 7781 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶))) | |
2 | 1 | 3comr 1119 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶))) |
3 | oaord 7781 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵))) | |
4 | 3 | 3com13 1118 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 ∈ 𝐵 ↔ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵))) |
5 | 2, 4 | orbi12d 904 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ((𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶) ∨ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵)))) |
6 | 5 | notbid 307 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶) ∨ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵)))) |
7 | eloni 5876 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
8 | eloni 5876 | . . . 4 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
9 | ordtri3 5902 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) | |
10 | 7, 8, 9 | syl2an 583 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
11 | 10 | 3adant1 1124 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
12 | oacl 7769 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ∈ On) | |
13 | eloni 5876 | . . . . 5 ⊢ ((𝐴 +𝑜 𝐵) ∈ On → Ord (𝐴 +𝑜 𝐵)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +𝑜 𝐵)) |
15 | oacl 7769 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +𝑜 𝐶) ∈ On) | |
16 | eloni 5876 | . . . . 5 ⊢ ((𝐴 +𝑜 𝐶) ∈ On → Ord (𝐴 +𝑜 𝐶)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 +𝑜 𝐶)) |
18 | ordtri3 5902 | . . . 4 ⊢ ((Ord (𝐴 +𝑜 𝐵) ∧ Ord (𝐴 +𝑜 𝐶)) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶) ∨ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵)))) | |
19 | 14, 17, 18 | syl2an 583 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶) ∨ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵)))) |
20 | 19 | 3impdi 1443 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐴 +𝑜 𝐶) ∨ (𝐴 +𝑜 𝐶) ∈ (𝐴 +𝑜 𝐵)))) |
21 | 6, 11, 20 | 3bitr4rd 301 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Ord word 5865 Oncon0 5866 (class class class)co 6793 +𝑜 coa 7710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-oadd 7717 |
This theorem is referenced by: oawordeulem 7788 |
Copyright terms: Public domain | W3C validator |