![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaabslem | Structured version Visualization version GIF version |
Description: Lemma for oaabs 7769. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
oaabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 ω) = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7113 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | limom 7122 | . . . . . 6 ⊢ Lim ω | |
3 | 2 | jctr 564 | . . . . 5 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
4 | oalim 7657 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +𝑜 ω) = ∪ 𝑥 ∈ ω (𝐴 +𝑜 𝑥)) | |
5 | 1, 3, 4 | syl2an 493 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +𝑜 ω) = ∪ 𝑥 ∈ ω (𝐴 +𝑜 𝑥)) |
6 | ordom 7116 | . . . . . . . 8 ⊢ Ord ω | |
7 | nnacl 7736 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 𝑥) ∈ ω) | |
8 | ordelss 5777 | . . . . . . . 8 ⊢ ((Ord ω ∧ (𝐴 +𝑜 𝑥) ∈ ω) → (𝐴 +𝑜 𝑥) ⊆ ω) | |
9 | 6, 7, 8 | sylancr 696 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 𝑥) ⊆ ω) |
10 | 9 | ralrimiva 2995 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +𝑜 𝑥) ⊆ ω) |
11 | iunss 4593 | . . . . . 6 ⊢ (∪ 𝑥 ∈ ω (𝐴 +𝑜 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +𝑜 𝑥) ⊆ ω) | |
12 | 10, 11 | sylibr 224 | . . . . 5 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 +𝑜 𝑥) ⊆ ω) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 +𝑜 𝑥) ⊆ ω) |
14 | 5, 13 | eqsstrd 3672 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +𝑜 ω) ⊆ ω) |
15 | 14 | ancoms 468 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 ω) ⊆ ω) |
16 | oaword2 7678 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +𝑜 ω)) | |
17 | 1, 16 | sylan2 490 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +𝑜 ω)) |
18 | 15, 17 | eqssd 3653 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 ω) = ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 ∪ ciun 4552 Ord word 5760 Oncon0 5761 Lim wlim 5762 (class class class)co 6690 ωcom 7107 +𝑜 coa 7602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-oadd 7609 |
This theorem is referenced by: oaabs 7769 oaabs2 7770 oancom 8586 |
Copyright terms: Public domain | W3C validator |