![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version |
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 5767. For the usual proof using complex numbers, see 2p2e4 11182. (Contributed by NM, 18-Aug-2021.) |
Ref | Expression |
---|---|
o2p2e4 | ⊢ (2𝑜 +𝑜 2𝑜) = 4𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 7613 | . . . 4 ⊢ 2𝑜 ∈ On | |
2 | 1on 7612 | . . . 4 ⊢ 1𝑜 ∈ On | |
3 | oasuc 7649 | . . . 4 ⊢ ((2𝑜 ∈ On ∧ 1𝑜 ∈ On) → (2𝑜 +𝑜 suc 1𝑜) = suc (2𝑜 +𝑜 1𝑜)) | |
4 | 1, 2, 3 | mp2an 708 | . . 3 ⊢ (2𝑜 +𝑜 suc 1𝑜) = suc (2𝑜 +𝑜 1𝑜) |
5 | df-2o 7606 | . . . 4 ⊢ 2𝑜 = suc 1𝑜 | |
6 | 5 | oveq2i 6701 | . . 3 ⊢ (2𝑜 +𝑜 2𝑜) = (2𝑜 +𝑜 suc 1𝑜) |
7 | df-3o 7607 | . . . . 5 ⊢ 3𝑜 = suc 2𝑜 | |
8 | oa1suc 7656 | . . . . . 6 ⊢ (2𝑜 ∈ On → (2𝑜 +𝑜 1𝑜) = suc 2𝑜) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ (2𝑜 +𝑜 1𝑜) = suc 2𝑜 |
10 | 7, 9 | eqtr4i 2676 | . . . 4 ⊢ 3𝑜 = (2𝑜 +𝑜 1𝑜) |
11 | suceq 5828 | . . . 4 ⊢ (3𝑜 = (2𝑜 +𝑜 1𝑜) → suc 3𝑜 = suc (2𝑜 +𝑜 1𝑜)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ suc 3𝑜 = suc (2𝑜 +𝑜 1𝑜) |
13 | 4, 6, 12 | 3eqtr4i 2683 | . 2 ⊢ (2𝑜 +𝑜 2𝑜) = suc 3𝑜 |
14 | df-4o 7608 | . 2 ⊢ 4𝑜 = suc 3𝑜 | |
15 | 13, 14 | eqtr4i 2676 | 1 ⊢ (2𝑜 +𝑜 2𝑜) = 4𝑜 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Oncon0 5761 suc csuc 5763 (class class class)co 6690 1𝑜c1o 7598 2𝑜c2o 7599 3𝑜c3o 7600 4𝑜c4o 7601 +𝑜 coa 7602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-3o 7607 df-4o 7608 df-oadd 7609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |