MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Structured version   Visualization version   GIF version

Theorem o1of2 14562
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
o1of2.2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
o1of2.3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
Assertion
Ref Expression
o1of2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐹   𝑚,𝐺,𝑛,𝑥,𝑦   𝑅,𝑚,𝑛,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑚,𝑛)

Proof of Theorem o1of2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14479 . . . 4 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
2 o1bdd 14481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
31, 2mpdan 705 . . 3 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
43adantr 472 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
5 o1f 14479 . . . 4 (𝐺 ∈ 𝑂(1) → 𝐺:dom 𝐺⟶ℂ)
6 o1bdd 14481 . . . 4 ((𝐺 ∈ 𝑂(1) ∧ 𝐺:dom 𝐺⟶ℂ) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
75, 6mpdan 705 . . 3 (𝐺 ∈ 𝑂(1) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
87adantl 473 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
9 reeanv 3245 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
10 reeanv 3245 . . . . 5 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
11 inss1 3976 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
12 ssralv 3807 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚)))
1311, 12ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
14 inss2 3977 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
15 ssralv 3807 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1614, 15ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
1713, 16anim12i 591 . . . . . . . 8 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
18 r19.26 3202 . . . . . . . 8 (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1917, 18sylibr 224 . . . . . . 7 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
20 prth 596 . . . . . . . . . 10 (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
21 simplrl 819 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑎 ∈ ℝ)
2221adantr 472 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑎 ∈ ℝ)
23 simplrr 820 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑏 ∈ ℝ)
2423adantr 472 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑏 ∈ ℝ)
25 o1dm 14480 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2625ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ⊆ ℝ)
2711, 26syl5ss 3755 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
2827sselda 3744 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑧 ∈ ℝ)
29 maxle 12235 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3022, 24, 28, 29syl3anc 1477 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3130biimpd 219 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (𝑎𝑧𝑏𝑧)))
321ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹:dom 𝐹⟶ℂ)
3311sseli 3740 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
34 ffvelrn 6521 . . . . . . . . . . . . . 14 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3532, 33, 34syl2an 495 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
365ad3antlr 769 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺:dom 𝐺⟶ℂ)
3714sseli 3740 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
38 ffvelrn 6521 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
3936, 37, 38syl2an 495 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
40 o1of2.3 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4140ralrimivva 3109 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4241ad2antlr 765 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
43 fveq2 6353 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (abs‘𝑥) = (abs‘(𝐹𝑧)))
4443breq1d 4814 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → ((abs‘𝑥) ≤ 𝑚 ↔ (abs‘(𝐹𝑧)) ≤ 𝑚))
4544anbi1d 743 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)))
46 oveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
4746fveq2d 6357 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → (abs‘(𝑥𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅𝑦)))
4847breq1d 4814 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → ((abs‘(𝑥𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀))
4945, 48imbi12d 333 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑧) → ((((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀)))
50 fveq2 6353 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → (abs‘𝑦) = (abs‘(𝐺𝑧)))
5150breq1d 4814 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → ((abs‘𝑦) ≤ 𝑛 ↔ (abs‘(𝐺𝑧)) ≤ 𝑛))
5251anbi2d 742 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
53 oveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
5453fveq2d 6357 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → (abs‘((𝐹𝑧)𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
5554breq1d 4814 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → ((abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5652, 55imbi12d 333 . . . . . . . . . . . . . 14 (𝑦 = (𝐺𝑧) → ((((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀)))
5749, 56rspc2va 3462 . . . . . . . . . . . . 13 ((((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5835, 39, 42, 57syl21anc 1476 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
59 ffn 6206 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
6032, 59syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹 Fn dom 𝐹)
61 ffn 6206 . . . . . . . . . . . . . . . 16 (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺)
6236, 61syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺 Fn dom 𝐺)
63 reex 10239 . . . . . . . . . . . . . . . 16 ℝ ∈ V
64 ssexg 4956 . . . . . . . . . . . . . . . 16 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
6526, 63, 64sylancl 697 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ∈ V)
66 dmexg 7263 . . . . . . . . . . . . . . . 16 (𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V)
6766ad3antlr 769 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐺 ∈ V)
68 eqid 2760 . . . . . . . . . . . . . . 15 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
69 eqidd 2761 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
70 eqidd 2761 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
7160, 62, 65, 67, 68, 69, 70ofval 7072 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑓 𝑅𝐺)‘𝑧) = ((𝐹𝑧)𝑅(𝐺𝑧)))
7271fveq2d 6357 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
7372breq1d 4814 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
7458, 73sylibrd 249 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀))
7531, 74imim12d 81 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7620, 75syl5 34 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7776ralimdva 3100 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
78 o1of2.2 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
7978adantl 473 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑅𝑦) ∈ ℂ)
8079, 32, 36, 65, 67, 68off 7078 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
8123, 21ifcld 4275 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
82 o1of2.1 . . . . . . . . . 10 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
8382adantl 473 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑀 ∈ ℝ)
84 elo12r 14478 . . . . . . . . . 10 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
85843expia 1115 . . . . . . . . 9 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8680, 27, 81, 83, 85syl22anc 1478 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8777, 86syld 47 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8819, 87syl5 34 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8988rexlimdvva 3176 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
9010, 89syl5bir 233 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
9190rexlimdvva 3176 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
929, 91syl5bir 233 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ((∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
934, 8, 92mp2and 717 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715  ifcif 4230   class class class wbr 4804  dom cdm 5266   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  cc 10146  cr 10147  cle 10287  abscabs 14193  𝑂(1)co1 14436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-ico 12394  df-o1 14440
This theorem is referenced by:  o1add  14563  o1mul  14564  o1sub  14565
  Copyright terms: Public domain W3C validator