MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Visualization version   GIF version

Theorem o1lo1 14476
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
o1lo1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo1
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 14469 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 14458 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43adantr 466 . . 3 (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ)
54a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ))
6 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
76ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
8 dmmptg 5775 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
97, 8syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109sseq1d 3781 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
11 simpr 471 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
126adantlr 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
1312adantlr 694 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 simplr 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
1513, 14absled 14377 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (-𝑚𝐵𝐵𝑚)))
16 ancom 448 . . . . . . . . . . . . . . . . 17 ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝑚𝐵))
17 lenegcon1 10738 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑚𝐵 ↔ -𝐵𝑚))
1814, 13, 17syl2anc 573 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑚𝐵 ↔ -𝐵𝑚))
1918anbi2d 614 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑚 ∧ -𝑚𝐵) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2016, 19syl5bb 272 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2115, 20bitrd 268 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2221imbi2d 329 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2322ralbidva 3134 . . . . . . . . . . . . 13 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2423rexbidv 3200 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2524biimpd 219 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
26 breq2 4791 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐵𝑛𝐵𝑚))
2726anbi1d 615 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑛 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑝)))
2827imbi2d 329 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
2928rexralbidv 3206 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
30 breq2 4791 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑚 → (-𝐵𝑝 ↔ -𝐵𝑚))
3130anbi2d 614 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ((𝐵𝑚 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
3231imbi2d 329 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3332rexralbidv 3206 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3429, 33rspc2ev 3474 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
35343anidm12 1529 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
3611, 25, 35syl6an 663 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
3736rexlimdva 3179 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
38 simplrr 763 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑛𝑝) → 𝑝 ∈ ℝ)
39 simplrl 762 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ ¬ 𝑛𝑝) → 𝑛 ∈ ℝ)
4038, 39ifclda 4260 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
41 max2 12223 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4241ad2antlr 706 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4312adantlr 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
4443renegcld 10663 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
45 simplrr 763 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ∈ ℝ)
46 simplrl 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
4745, 46ifcld 4271 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
48 letr 10337 . . . . . . . . . . . . . . . . . . . 20 ((-𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
4944, 45, 47, 48syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5042, 49mpan2d 674 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
51 lenegcon1 10738 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5243, 47, 51syl2anc 573 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5350, 52sylibd 229 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
54 max1 12221 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
5554ad2antlr 706 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
56 letr 10337 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5743, 46, 47, 56syl3anc 1476 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5855, 57mpan2d 674 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5953, 58anim12d 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝐵𝑛) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6059ancomsd 451 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6143, 47absled 14377 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6260, 61sylibrd 249 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6362imim2d 57 . . . . . . . . . . . . 13 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6463ralimdva 3111 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6564reximdv 3164 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
66 breq2 4791 . . . . . . . . . . . . . 14 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((abs‘𝐵) ≤ 𝑚 ↔ (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6766imbi2d 329 . . . . . . . . . . . . 13 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6867rexralbidv 3206 . . . . . . . . . . . 12 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6968rspcev 3460 . . . . . . . . . . 11 ((if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
7040, 65, 69syl6an 663 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7170rexlimdvva 3186 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7237, 71impbid 202 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
73 rexanre 14294 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7473adantl 467 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
75742rexbidv 3205 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7672, 75bitrd 268 . . . . . . 7 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
77 reeanv 3255 . . . . . . 7 (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
7876, 77syl6bb 276 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
79 rexcom 3247 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
80 rexcom 3247 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛))
81 rexcom 3247 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝) ↔ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))
8280, 81anbi12i 612 . . . . . 6 ((∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
8378, 79, 823bitr4g 303 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
84 simpr 471 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
8512recnd 10274 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
8684, 85elo1mpt 14473 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
8784, 12ello1mpt 14460 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛)))
8812renegcld 10663 . . . . . . 7 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
8984, 88ello1mpt 14460 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
9087, 89anbi12d 616 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
9183, 86, 903bitr4d 300 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
9291ex 397 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
9310, 92sylbid 230 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
942, 5, 93pm5.21ndd 368 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723  ifcif 4226   class class class wbr 4787  cmpt 4864  dom cdm 5250  cfv 6030  cr 10141  cle 10281  -cneg 10473  abscabs 14182  𝑂(1)co1 14425  ≤𝑂(1)clo1 14426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-ico 12386  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-o1 14429  df-lo1 14430
This theorem is referenced by:  o1lo12  14477  o1lo1d  14478  icco1  14479  lo1sub  14569
  Copyright terms: Public domain W3C validator