MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Structured version   Visualization version   GIF version

Theorem o1cxp 24900
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1 (𝜑𝐶 ∈ ℂ)
o1cxp.2 (𝜑 → 0 ≤ (ℜ‘𝐶))
o1cxp.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1cxp.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1cxp (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1cxp
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1cxp.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 14459 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1cxp.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 5793 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6192 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 222 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 o1bdd 14461 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
111, 9, 10syl2anc 696 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
12 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 eqid 2760 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6453 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1512, 4, 14syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615oveq1d 6828 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (𝐵𝑐𝐶))
17 ovex 6841 . . . . . . . . . . . . . . 15 (𝐵𝑐𝐶) ∈ V
18 eqid 2760 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐵𝑐𝐶)) = (𝑥𝐴 ↦ (𝐵𝑐𝐶))
1918fvmpt2 6453 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ (𝐵𝑐𝐶) ∈ V) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2012, 17, 19sylancl 697 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2116, 20eqtr4d 2797 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
2221ralrimiva 3104 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
23 nfv 1992 . . . . . . . . . . . . 13 𝑧(((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥)
24 nffvmpt1 6360 . . . . . . . . . . . . . . 15 𝑥((𝑥𝐴𝐵)‘𝑧)
25 nfcv 2902 . . . . . . . . . . . . . . 15 𝑥𝑐
26 nfcv 2902 . . . . . . . . . . . . . . 15 𝑥𝐶
2724, 25, 26nfov 6839 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)
28 nffvmpt1 6360 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
2927, 28nfeq 2914 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
30 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
3130oveq1d 6828 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶))
32 fveq2 6352 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3331, 32eqeq12d 2775 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
3423, 29, 33cbvral 3306 . . . . . . . . . . . 12 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3522, 34sylib 208 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3635r19.21bi 3070 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3736ad2ant2r 800 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3837fveq2d 6356 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
399ffvelrnda 6522 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
4039ad2ant2r 800 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
41 o1cxp.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
4241ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ)
43 o1cxp.2 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐶))
4443ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶))
45 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ)
46 0re 10232 . . . . . . . . . . 11 0 ∈ ℝ
47 ifcl 4274 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4845, 46, 47sylancl 697 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4948adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
5040abscld 14374 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ∈ ℝ)
5145adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ)
52 simprr 813 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)
53 max2 12211 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5446, 45, 53sylancr 698 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5554adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5650, 51, 49, 52, 55letrd 10386 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0))
5740, 42, 44, 49, 56abscxpbnd 24693 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5838, 57eqbrtrrd 4828 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5958expr 644 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))))
6059imim2d 57 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
6160ralimdva 3100 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
624, 1o1mptrcl 14552 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6341adantr 472 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
6462, 63cxpcld 24653 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
6564, 18fmptd 6548 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
6665adantr 472 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
67 o1dm 14460 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
681, 67syl 17 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
697, 68eqsstr3d 3781 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
7069adantr 472 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ)
71 simprl 811 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ)
72 max1 12209 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7346, 45, 72sylancr 698 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7441adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ)
7574recld 14133 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈ ℝ)
7648, 73, 75recxpcld 24668 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) ∈ ℝ)
7774abscld 14374 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈ ℝ)
78 pire 24409 . . . . . . . 8 π ∈ ℝ
79 remulcl 10213 . . . . . . . 8 (((abs‘𝐶) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈ ℝ)
8077, 78, 79sylancl 697 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈ ℝ)
8180reefcld 15017 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (exp‘((abs‘𝐶) · π)) ∈ ℝ)
8276, 81remulcld 10262 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)
83 elo12r 14458 . . . . . 6 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ) ∧ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
84833expia 1115 . . . . 5 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8566, 70, 71, 82, 84syl22anc 1478 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8661, 85syld 47 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8786rexlimdvva 3176 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8811, 87mpd 15 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   · cmul 10133  cle 10267  cre 14036  abscabs 14173  𝑂(1)co1 14416  expce 14991  πcpi 14996  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-o1 14420  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator