![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrunit | Structured version Visualization version GIF version |
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nzrunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
nzrunit.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrunit | ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | nzrunit.2 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | nzrnz 19475 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
4 | nzrring 19476 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
5 | nzrunit.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
6 | 5, 2, 1 | 0unit 18888 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ (1r‘𝑅) = 0 )) |
7 | 6 | necon3bbid 2980 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
9 | 3, 8 | mpbird 247 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈) |
10 | eleq1 2838 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈)) | |
11 | 10 | notbid 307 | . . . 4 ⊢ (𝐴 = 0 → (¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈)) |
12 | 9, 11 | syl5ibrcom 237 | . . 3 ⊢ (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴 ∈ 𝑈)) |
13 | 12 | necon2ad 2958 | . 2 ⊢ (𝑅 ∈ NzRing → (𝐴 ∈ 𝑈 → 𝐴 ≠ 0 )) |
14 | 13 | imp 393 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6030 0gc0g 16308 1rcur 18709 Ringcrg 18755 Unitcui 18847 NzRingcnzr 19472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-nzr 19473 |
This theorem is referenced by: unitnmn0 22692 nrginvrcnlem 22715 nzrneg1ne0 42394 |
Copyright terms: Public domain | W3C validator |