![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2770 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 19473 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | simplbi 479 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 ≠ wne 2942 ‘cfv 6031 0gc0g 16307 1rcur 18708 Ringcrg 18754 NzRingcnzr 19471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-nzr 19472 |
This theorem is referenced by: opprnzr 19479 nzrunit 19481 domnring 19510 domnchr 20094 uvcf1 20347 lindfind2 20373 frlmisfrlm 20403 nminvr 22692 deg1pw 24099 ply1nz 24100 ply1remlem 24141 ply1rem 24142 facth1 24143 fta1glem1 24144 fta1glem2 24145 zrhnm 30347 mon1pid 38302 mon1psubm 38303 nzrneg1ne0 42387 islindeps2 42790 |
Copyright terms: Public domain | W3C validator |