![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nzprmdif | Structured version Visualization version GIF version |
Description: Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nzprmdif.m | ⊢ (𝜑 → 𝑀 ∈ ℙ) |
nzprmdif.n | ⊢ (𝜑 → 𝑁 ∈ ℙ) |
nzprmdif.ne | ⊢ (𝜑 → 𝑀 ≠ 𝑁) |
Ref | Expression |
---|---|
nzprmdif | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 4008 | . . 3 ⊢ (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) | |
2 | nzprmdif.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℙ) | |
3 | prmz 15595 | . . . . . 6 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | nzprmdif.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℙ) | |
6 | prmz 15595 | . . . . . 6 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
8 | 4, 7 | nzin 39036 | . . . 4 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
9 | 8 | difeq2d 3877 | . . 3 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
10 | 1, 9 | syl5eqr 2818 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)}))) |
11 | lcmgcd 15527 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
12 | 4, 7, 11 | syl2anc 565 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
13 | nzprmdif.ne | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝑁) | |
14 | prmrp 15630 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℙ ∧ 𝑁 ∈ ℙ) → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) | |
15 | 2, 5, 14 | syl2anc 565 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 gcd 𝑁) = 1 ↔ 𝑀 ≠ 𝑁)) |
16 | 13, 15 | mpbird 247 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
17 | 16 | oveq2d 6808 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 1)) |
18 | lcmcl 15521 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
19 | 4, 7, 18 | syl2anc 565 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
20 | 19 | nn0cnd 11554 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℂ) |
21 | 20 | mulid1d 10258 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · 1) = (𝑀 lcm 𝑁)) |
22 | 17, 21 | eqtrd 2804 | . . . . . 6 ⊢ (𝜑 → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁)) |
23 | 4 | zred 11683 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
24 | 7 | zred 11683 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
25 | 23, 24 | remulcld 10271 | . . . . . . 7 ⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℝ) |
26 | prmnn 15594 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℙ → 𝑀 ∈ ℕ) | |
27 | 2, 26 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
28 | 27 | nnnn0d 11552 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
29 | 28 | nn0ge0d 11555 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑀) |
30 | prmnn 15594 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
32 | 31 | nnnn0d 11552 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
33 | 32 | nn0ge0d 11555 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝑁) |
34 | 23, 24, 29, 33 | mulge0d 10805 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ (𝑀 · 𝑁)) |
35 | 25, 34 | absidd 14368 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
36 | 12, 22, 35 | 3eqtr3d 2812 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) = (𝑀 · 𝑁)) |
37 | 36 | sneqd 4326 | . . . 4 ⊢ (𝜑 → {(𝑀 lcm 𝑁)} = {(𝑀 · 𝑁)}) |
38 | 37 | imaeq2d 5607 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) = ( ∥ “ {(𝑀 · 𝑁)})) |
39 | 38 | difeq2d 3877 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 lcm 𝑁)})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
40 | 10, 39 | eqtrd 2804 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∖ cdif 3718 ∩ cin 3720 {csn 4314 “ cima 5252 ‘cfv 6031 (class class class)co 6792 1c1 10138 · cmul 10142 ℕcn 11221 ℕ0cn0 11493 ℤcz 11578 abscabs 14181 ∥ cdvds 15188 gcd cgcd 15423 lcm clcm 15508 ℙcprime 15591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-dvds 15189 df-gcd 15424 df-lcm 15510 df-prm 15592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |