![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvvcop | Structured version Visualization version GIF version |
Description: A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvvcop | ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvss 27753 | . . 3 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
2 | 1 | sseli 3736 | . 2 ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 〈𝑊, 𝑁〉 ∈ (CVecOLD × V)) |
3 | opelxp1 5303 | . 2 ⊢ (〈𝑊, 𝑁〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
4 | 2, 3 | syl 17 | 1 ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2135 Vcvv 3336 〈cop 4323 × cxp 5260 CVecOLDcvc 27718 NrmCVeccnv 27744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-opab 4861 df-xp 5268 df-oprab 6813 df-nv 27752 |
This theorem is referenced by: nvex 27771 |
Copyright terms: Public domain | W3C validator |