MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Structured version   Visualization version   GIF version

Theorem nvss 27576
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss NrmCVec ⊆ (CVecOLD × V)

Proof of Theorem nvss
Dummy variables 𝑔 𝑠 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2718 . . . . . . 7 (𝑤 = ⟨𝑔, 𝑠⟩ → (𝑤 ∈ CVecOLD ↔ ⟨𝑔, 𝑠⟩ ∈ CVecOLD))
21biimpar 501 . . . . . 6 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ ⟨𝑔, 𝑠⟩ ∈ CVecOLD) → 𝑤 ∈ CVecOLD)
323ad2antr1 1246 . . . . 5 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
43exlimivv 1900 . . . 4 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
5 vex 3234 . . . 4 𝑛 ∈ V
64, 5jctir 560 . . 3 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → (𝑤 ∈ CVecOLD𝑛 ∈ V))
76ssopab2i 5032 . 2 {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))} ⊆ {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
8 df-nv 27575 . . 3 NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
9 dfoprab2 6743 . . 3 {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))} = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
108, 9eqtri 2673 . 2 NrmCVec = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
11 df-xp 5149 . 2 (CVecOLD × V) = {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
127, 10, 113sstr4i 3677 1 NrmCVec ⊆ (CVecOLD × V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wral 2941  Vcvv 3231  wss 3607  cop 4216   class class class wbr 4685  {copab 4745   × cxp 5141  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  {coprab 6691  cc 9972  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979  cle 10113  abscabs 14018  GIdcgi 27472  CVecOLDcvc 27541  NrmCVeccnv 27567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746  df-xp 5149  df-oprab 6694  df-nv 27575
This theorem is referenced by:  nvvcop  27577  nvrel  27585  nvvop  27592  nvex  27594
  Copyright terms: Public domain W3C validator