MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvscom Structured version   Visualization version   GIF version

Theorem nvscom 27764
Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvscom ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(𝐵𝑆𝐶)) = (𝐵𝑆(𝐴𝑆𝐶)))

Proof of Theorem nvscom
StepHypRef Expression
1 mulcom 10185 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
21oveq1d 6816 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
323adant3 1124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
43adantl 473 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = ((𝐵 · 𝐴)𝑆𝐶))
5 nvscl.1 . . 3 𝑋 = (BaseSet‘𝑈)
6 nvscl.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvsass 27763 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
8 3ancoma 1084 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) ↔ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋))
95, 6nvsass 27763 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐵 · 𝐴)𝑆𝐶) = (𝐵𝑆(𝐴𝑆𝐶)))
108, 9sylan2b 493 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐵 · 𝐴)𝑆𝐶) = (𝐵𝑆(𝐴𝑆𝐶)))
114, 7, 103eqtr3d 2790 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑆(𝐵𝑆𝐶)) = (𝐵𝑆(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  cfv 6037  (class class class)co 6801  cc 10097   · cmul 10104  NrmCVeccnv 27719  BaseSetcba 27721   ·𝑠OLD cns 27722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-mulcom 10163
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-1st 7321  df-2nd 7322  df-vc 27694  df-nv 27727  df-va 27730  df-ba 27731  df-sm 27732  df-0v 27733  df-nmcv 27735
This theorem is referenced by:  nvmdi  27783
  Copyright terms: Public domain W3C validator