![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvrel | Structured version Visualization version GIF version |
Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvrel | ⊢ Rel NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvss 27678 | . 2 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
2 | relxp 5235 | . 2 ⊢ Rel (CVecOLD × V) | |
3 | relss 5315 | . 2 ⊢ (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3304 ⊆ wss 3680 × cxp 5216 Rel wrel 5223 CVecOLDcvc 27643 NrmCVeccnv 27669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-opab 4821 df-xp 5224 df-rel 5225 df-oprab 6769 df-nv 27677 |
This theorem is referenced by: nvop2 27693 nvop 27761 phrel 27900 bnrel 27953 |
Copyright terms: Public domain | W3C validator |