![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvgrp | Structured version Visualization version GIF version |
Description: The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvabl.1 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvgrp | ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvabl.1 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvablo 27811 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp) |
3 | ablogrpo 27741 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 GrpOpcgr 27683 AbelOpcablo 27738 NrmCVeccnv 27779 +𝑣 cpv 27780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-1st 7319 df-2nd 7320 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-nmcv 27795 |
This theorem is referenced by: nvgf 27813 nvgcl 27815 nvass 27817 nvrcan 27819 nvzcl 27829 nv0rid 27830 nv0lid 27831 nvinvfval 27835 nvmval 27837 nvmfval 27839 nvnegneg 27844 nvrinv 27846 nvlinv 27847 hhshsslem1 28464 |
Copyright terms: Public domain | W3C validator |