![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version |
Description: The universal class doesn't belong to any class. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
nvel | ⊢ ¬ V ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4829 | . 2 ⊢ ¬ V ∈ V | |
2 | elex 3243 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
3 | 1, 2 | mto 188 | 1 ⊢ ¬ V ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2030 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: eliuniincex 39606 eliincex 39607 nvelim 41521 |
Copyright terms: Public domain | W3C validator |