MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvel Structured version   Visualization version   GIF version

Theorem nvel 4830
Description: The universal class doesn't belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 4829 . 2 ¬ V ∈ V
2 elex 3243 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 188 1 ¬ V ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2030  Vcvv 3231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814
This theorem depends on definitions:  df-bi 197  df-an 385  df-tru 1526  df-ex 1745  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233
This theorem is referenced by:  eliuniincex  39606  eliincex  39607  nvelim  41521
  Copyright terms: Public domain W3C validator