MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcl Structured version   Visualization version   GIF version

Theorem nvcl 27796
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvf.1 𝑋 = (BaseSet‘𝑈)
nvf.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)

Proof of Theorem nvcl
StepHypRef Expression
1 nvf.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 nvf.6 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 27795 . 2 (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ)
43ffvelrnda 6510 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  cfv 6037  cr 10098  NrmCVeccnv 27719  BaseSetcba 27721  normCVcnmcv 27725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-1st 7321  df-2nd 7322  df-vc 27694  df-nv 27727  df-va 27730  df-ba 27731  df-sm 27732  df-0v 27733  df-nmcv 27735
This theorem is referenced by:  nvcli  27797  nvm1  27800  nvpi  27802  nvz0  27803  nvmtri  27806  nvabs  27807  nvge0  27808  nvgt0  27809  nv1  27810  nmcvcn  27830  smcnlem  27832  ipval2lem2  27839  4ipval2  27843  ipidsq  27845  ipnm  27846  ipz  27854  nmosetre  27899  nmooge0  27902  nmoub3i  27908  nmounbi  27911  nmlno0lem  27928  nmblolbii  27934  blocnilem  27939  ipblnfi  27991  ubthlem1  28006  ubthlem2  28007  ubthlem3  28008  minvecolem1  28010  minvecolem2  28011  minvecolem4  28016  minvecolem5  28017  minvecolem6  28018  hlipgt0  28050  htthlem  28054
  Copyright terms: Public domain W3C validator