![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | 1, 2 | nvf 27795 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
4 | 3 | ffvelrnda 6510 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ‘cfv 6037 ℝcr 10098 NrmCVeccnv 27719 BaseSetcba 27721 normCVcnmcv 27725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-1st 7321 df-2nd 7322 df-vc 27694 df-nv 27727 df-va 27730 df-ba 27731 df-sm 27732 df-0v 27733 df-nmcv 27735 |
This theorem is referenced by: nvcli 27797 nvm1 27800 nvpi 27802 nvz0 27803 nvmtri 27806 nvabs 27807 nvge0 27808 nvgt0 27809 nv1 27810 nmcvcn 27830 smcnlem 27832 ipval2lem2 27839 4ipval2 27843 ipidsq 27845 ipnm 27846 ipz 27854 nmosetre 27899 nmooge0 27902 nmoub3i 27908 nmounbi 27911 nmlno0lem 27928 nmblolbii 27934 blocnilem 27939 ipblnfi 27991 ubthlem1 28006 ubthlem2 28007 ubthlem3 28008 minvecolem1 28010 minvecolem2 28011 minvecolem4 28016 minvecolem5 28017 minvecolem6 28018 hlipgt0 28050 htthlem 28054 |
Copyright terms: Public domain | W3C validator |