MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvablo Structured version   Visualization version   GIF version

Theorem nvablo 27811
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvablo (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)

Proof of Theorem nvablo
StepHypRef Expression
1 eqid 2771 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 27810 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvabl.1 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 27798 . . 3 𝐺 = (1st ‘(1st𝑈))
54vcablo 27764 . 2 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
62, 5syl 17 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6031  1st c1st 7313  AbelOpcablo 27738  CVecOLDcvc 27753  NrmCVeccnv 27779   +𝑣 cpv 27780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-1st 7315  df-2nd 7316  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-nmcv 27795
This theorem is referenced by:  nvgrp  27812  nvcom  27816  nvadd32  27818  nvadd4  27820  nvnnncan1  27842  nvaddsub  27850
  Copyright terms: Public domain W3C validator