![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv2 | Structured version Visualization version GIF version |
Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvdi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvdi.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvdi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nv2 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 27804 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | nvdi.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 27792 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
5 | nvdi.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 27794 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvdi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 27793 | . . 3 ⊢ 𝑋 = ran 𝐺 |
9 | 4, 6, 8 | vc2OLD 27757 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
10 | 2, 9 | sylan 561 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 1st c1st 7312 2c2 11271 CVecOLDcvc 27747 NrmCVeccnv 27773 +𝑣 cpv 27774 BaseSetcba 27775 ·𝑠OLD cns 27776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-1cn 10195 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-1st 7314 df-2nd 7315 df-2 11280 df-vc 27748 df-nv 27781 df-va 27784 df-ba 27785 df-sm 27786 df-0v 27787 df-nmcv 27789 |
This theorem is referenced by: ipidsq 27899 minvecolem2 28065 |
Copyright terms: Public domain | W3C validator |