![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv0 | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nv0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nv0.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nv0.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nv0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 27810 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | eqid 2771 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 27798 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
5 | nv0.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 27800 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nv0.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 27799 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
9 | eqid 2771 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
10 | 4, 6, 8, 9 | vc0 27769 | . . 3 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = (GId‘( +𝑣 ‘𝑈))) |
11 | 2, 10 | sylan 569 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = (GId‘( +𝑣 ‘𝑈))) |
12 | nv0.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
13 | 3, 12 | 0vfval 27801 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
14 | 13 | adantr 466 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
15 | 11, 14 | eqtr4d 2808 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 1st c1st 7313 0cc0 10138 GIdcgi 27684 CVecOLDcvc 27753 NrmCVeccnv 27779 +𝑣 cpv 27780 BaseSetcba 27781 ·𝑠OLD cns 27782 0veccn0v 27783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-1st 7315 df-2nd 7316 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-grpo 27687 df-gid 27688 df-ginv 27689 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-nmcv 27795 |
This theorem is referenced by: nvmul0or 27845 nvz0 27863 nvge0 27868 ipasslem1 28026 hlmul0 28105 |
Copyright terms: Public domain | W3C validator |