MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numth3 Structured version   Visualization version   GIF version

Theorem numth3 9277
Description: All sets are well-orderable under choice. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
numth3 (𝐴𝑉𝐴 ∈ dom card)

Proof of Theorem numth3
StepHypRef Expression
1 elex 3207 . 2 (𝐴𝑉𝐴 ∈ V)
2 cardeqv 9276 . 2 dom card = V
31, 2syl6eleqr 2710 1 (𝐴𝑉𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1988  Vcvv 3195  dom cdm 5104  cardccrd 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-ac2 9270
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-wrecs 7392  df-recs 7453  df-en 7941  df-card 8750  df-ac 8924
This theorem is referenced by:  numth2  9278  ac5b  9285  ac6  9287  zorn2  9313  zorn  9314  zornn0  9315  ttukey  9325  fodom  9329  wdomac  9334  iundom  9349  cardval  9353  cardid  9354  carden  9358  carddom  9361  cardsdom  9362  domtri  9363  sdomsdomcard  9367  infxpidm  9369  ondomon  9370  infmap  9383  aleph1irr  14956  lbsext  19144  hauspwdom  21285  filssufil  21697  ufilen  21715
  Copyright terms: Public domain W3C validator