![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numma | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numma.8 | ⊢ 𝑃 ∈ ℕ0 |
numma.9 | ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 |
numma.10 | ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
numma | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . 4 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | 1 | oveq1i 6700 | . . 3 ⊢ (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃) |
3 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
4 | 2, 3 | oveq12i 6702 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
5 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
6 | 5 | nn0cni 11342 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
7 | numma.2 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 11342 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | numma.8 | . . . . . . . 8 ⊢ 𝑃 ∈ ℕ0 | |
10 | 9 | nn0cni 11342 | . . . . . . 7 ⊢ 𝑃 ∈ ℂ |
11 | 8, 10 | mulcli 10083 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℂ |
12 | numma.4 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
13 | 12 | nn0cni 11342 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
14 | 6, 11, 13 | adddii 10088 | . . . . 5 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
15 | 6, 8, 10 | mulassi 10087 | . . . . . 6 ⊢ ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃)) |
16 | 15 | oveq1i 6700 | . . . . 5 ⊢ (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
17 | 14, 16 | eqtr4i 2676 | . . . 4 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) |
18 | 17 | oveq1i 6700 | . . 3 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
19 | 6, 8 | mulcli 10083 | . . . . . 6 ⊢ (𝑇 · 𝐴) ∈ ℂ |
20 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
21 | 20 | nn0cni 11342 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
22 | 19, 21, 10 | adddiri 10089 | . . . . 5 ⊢ (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) |
23 | 22 | oveq1i 6700 | . . . 4 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
24 | 19, 10 | mulcli 10083 | . . . . 5 ⊢ ((𝑇 · 𝐴) · 𝑃) ∈ ℂ |
25 | 6, 13 | mulcli 10083 | . . . . 5 ⊢ (𝑇 · 𝐶) ∈ ℂ |
26 | 21, 10 | mulcli 10083 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
27 | numma.5 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
28 | 27 | nn0cni 11342 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
29 | 24, 25, 26, 28 | add4i 10298 | . . . 4 ⊢ ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
30 | 23, 29 | eqtr4i 2676 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
31 | 18, 30 | eqtr4i 2676 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
32 | numma.9 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 | |
33 | 32 | oveq2i 6701 | . . 3 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸) |
34 | numma.10 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 | |
35 | 33, 34 | oveq12i 6702 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹) |
36 | 4, 31, 35 | 3eqtr2i 2679 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 (class class class)co 6690 + caddc 9977 · cmul 9979 ℕ0cn0 11330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-nn 11059 df-n0 11331 |
This theorem is referenced by: nummac 11596 numadd 11598 decma 11602 decmaOLD 11603 |
Copyright terms: Public domain | W3C validator |