![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovh0 | Structured version Visualization version GIF version |
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlkovh.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlkovh0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6824 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
2 | oveq1 6822 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑛 − 2) = (𝑁 − 2)) | |
3 | 2 | adantl 473 | . . . . 5 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑛 − 2) = (𝑁 − 2)) |
4 | 3 | fveq2d 6358 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) |
5 | simpl 474 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → 𝑣 = 𝑋) | |
6 | 4, 5 | neeq12d 2994 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) ≠ 𝑣 ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
7 | 1, 6 | rabeqbidv 3336 | . 2 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
8 | numclwwlkovh.h | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
9 | ovex 6843 | . . 3 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V | |
10 | 9 | rabex 4965 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ V |
11 | 7, 8, 10 | ovmpt2a 6958 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 {crab 3055 ‘cfv 6050 (class class class)co 6815 ↦ cmpt2 6817 − cmin 10479 2c2 11283 ℤ≥cuz 11900 ClWWalksNOncclwwlknon 27254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 |
This theorem is referenced by: numclwwlkovh 27556 numclwwlk3lemlem 27573 numclwwlk3lem 27574 |
Copyright terms: Public domain | W3C validator |