Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   GIF version

Theorem numclwwlk7 27559
 Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 27494 or frrusgrord 27495, and p divides (k-1), i.e. (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 27418, as well as k-regular (for any k), see 0vtxrgr 26682, but has no closed walk, see 0clwlk0 27284, this theorem would be false for a null graph: ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0 ≠ 1, so this case must be excluded (by assuming 𝑉 ≠ ∅). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk7 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 807 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺RegUSGraph𝐾)
2 simplr 809 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
3 simprr 813 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
41, 2, 33jca 1123 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → (𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
5 numclwwlk6.v . . . 4 𝑉 = (Vtx‘𝐺)
65numclwwlk6 27558 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
74, 6stoic3 1850 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
8 simp2 1132 . . . . . 6 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
98ancomd 466 . . . . 5 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
10 simp1 1131 . . . . . 6 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ))
1110ancomd 466 . . . . 5 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾))
125frrusgrord 27495 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
139, 11, 12sylc 65 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
1413oveq1d 6828 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
155numclwwlk7lem 27557 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
16 nn0cn 11494 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
17 peano2cnm 10539 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℂ)
1916, 18mulcomd 10253 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) = ((𝐾 − 1) · 𝐾))
2019oveq1d 6828 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
2120adantr 472 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
22 prmnn 15590 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2322ad2antrl 766 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
24 nn0z 11592 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
25 peano2zm 11612 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
2624, 25syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
2726adantr 472 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
2824adantr 472 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
2923, 27, 283jca 1123 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
30 simprr 813 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
31 mulmoddvds 15253 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0))
3229, 30, 31sylc 65 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0)
3321, 32eqtrd 2794 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = 0)
3422nnred 11227 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35 prmgt1 15611 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
3634, 35jca 555 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3736ad2antrl 766 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
38 1mod 12896 . . . . . . . 8 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3937, 38syl 17 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
4033, 39oveq12d 6831 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) = (0 + 1))
4140oveq1d 6828 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
42 nn0re 11493 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
43 peano2rem 10540 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
4442, 43syl 17 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
4542, 44remulcld 10262 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℝ)
4645adantr 472 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 · (𝐾 − 1)) ∈ ℝ)
47 1red 10247 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 1 ∈ ℝ)
4822nnrpd 12063 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
4948ad2antrl 766 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
50 modaddabs 12902 . . . . . 6 (((𝐾 · (𝐾 − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
5146, 47, 49, 50syl3anc 1477 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
52 0p1e1 11324 . . . . . . 7 (0 + 1) = 1
5352oveq1i 6823 . . . . . 6 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
5434, 35, 38syl2anc 696 . . . . . . 7 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
5554ad2antrl 766 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
5653, 55syl5eq 2806 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
5741, 51, 563eqtr3d 2802 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5815, 57stoic3 1850 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5914, 58eqtrd 2794 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = 1)
607, 59eqtrd 2794 1 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∅c0 4058   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266   − cmin 10458  ℕcn 11212  ℕ0cn0 11484  ℤcz 11569  ℝ+crp 12025   mod cmo 12862  ♯chash 13311   ∥ cdvds 15182  ℙcprime 15587  Vtxcvtx 26073  RegUSGraphcrusgr 26662   ClWWalksN cclwwlkn 27147   FriendGraph cfrgr 27410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-ac2 9477  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-ac 9129  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-rp 12026  df-xadd 12140  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-s2 13793  df-s3 13794  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-dvds 15183  df-gcd 15419  df-prm 15588  df-phi 15673  df-vtx 26075  df-iedg 26076  df-edg 26139  df-uhgr 26152  df-ushgr 26153  df-upgr 26176  df-umgr 26177  df-uspgr 26244  df-usgr 26245  df-fusgr 26408  df-nbgr 26424  df-vtxdg 26572  df-rgr 26663  df-rusgr 26664  df-wlks 26705  df-wlkson 26706  df-trls 26799  df-trlson 26800  df-pths 26822  df-spths 26823  df-pthson 26824  df-spthson 26825  df-wwlks 26933  df-wwlksn 26934  df-wwlksnon 26935  df-wspthsn 26936  df-wspthsnon 26937  df-clwwlk 27105  df-clwwlkn 27149  df-clwwlknon 27233  df-frgr 27411 This theorem is referenced by:  frgrreggt1  27561
 Copyright terms: Public domain W3C validator