Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2 Structured version   Visualization version   GIF version

Theorem numclwwlk2 27567
 Description: Statement 10 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg 27123, we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk2
StepHypRef Expression
1 eluzelcn 11899 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 11294 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2npcand 10597 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
43eqcomd 2776 . . . . . 6 (𝑁 ∈ (ℤ‘3) → 𝑁 = ((𝑁 − 2) + 2))
543ad2ant3 1128 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 = ((𝑁 − 2) + 2))
65adantl 467 . . . 4 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 = ((𝑁 − 2) + 2))
76oveq2d 6808 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐻𝑁) = (𝑋𝐻((𝑁 − 2) + 2)))
87fveq2d 6336 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
9 simplr 744 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FriendGraph )
10 simpr2 1234 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
11 uz3m2nn 11932 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
12113ad2ant3 1128 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ)
1312adantl 467 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
14 numclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
15 numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
16 numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
1714, 15, 16numclwwlk2lem3 27566 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
189, 10, 13, 17syl3anc 1475 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = (♯‘(𝑋𝐻((𝑁 − 2) + 2))))
19 simpl 468 . . . 4 ((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) → 𝐺RegUSGraph𝐾)
20 simp1 1129 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
2119, 20anim12i 592 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺RegUSGraph𝐾𝑉 ∈ Fin))
2211anim2i 595 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
23223adant1 1123 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2423adantl 467 . . 3 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
2514, 15numclwwlkqhash 27561 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ)) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
2621, 24, 25syl2anc 565 . 2 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝑄(𝑁 − 2))) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
278, 18, 263eqtr2d 2810 1 (((𝐺RegUSGraph𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  {crab 3064   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794  Fincfn 8108  0cc0 10137   + caddc 10140   − cmin 10467  ℕcn 11221  2c2 11271  3c3 11272  ℤ≥cuz 11887  ↑cexp 13066  ♯chash 13320  lastSclsw 13487  Vtxcvtx 26094  RegUSGraphcrusgr 26686   WWalksN cwwlksn 26953  ClWWalksNOncclwwlknon 27256   FriendGraph cfrgr 27435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-rp 12035  df-xadd 12151  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-vtx 26096  df-iedg 26097  df-edg 26160  df-uhgr 26173  df-ushgr 26174  df-upgr 26197  df-umgr 26198  df-uspgr 26266  df-usgr 26267  df-fusgr 26431  df-nbgr 26447  df-vtxdg 26596  df-rgr 26687  df-rusgr 26688  df-wwlks 26957  df-wwlksn 26958  df-wwlksnon 26959  df-clwwlk 27129  df-clwwlkn 27173  df-clwwlknon 27257  df-frgr 27436 This theorem is referenced by:  numclwwlk3  27578
 Copyright terms: Public domain W3C validator