Step | Hyp | Ref
| Expression |
1 | | ovex 6837 |
. . 3
⊢ (𝑋𝐶𝑁) ∈ V |
2 | | rusgrusgr 26666 |
. . . . 5
⊢ (𝐺RegUSGraph𝐾 → 𝐺 ∈ USGraph) |
3 | 2 | ad2antlr 765 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐺 ∈
USGraph) |
4 | | simprl 811 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝑋 ∈ 𝑉) |
5 | | simprr 813 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝑁 ∈
(ℤ≥‘3)) |
6 | | extwwlkfab.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | extwwlkfab.c |
. . . . 5
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
8 | | extwwlkfab.f |
. . . . 5
⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
9 | 6, 7, 8 | numclwwlk1lem2 27515 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
10 | 3, 4, 5, 9 | syl3anc 1477 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
11 | | hasheqf1oi 13330 |
. . 3
⊢ ((𝑋𝐶𝑁) ∈ V → (∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))))) |
12 | 1, 10, 11 | mpsyl 68 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (♯‘(𝑋𝐶𝑁)) = (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋)))) |
13 | | eqid 2756 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
14 | 13 | clwwlknonfin 27237 |
. . . . . 6
⊢
((Vtx‘𝐺)
∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
15 | 6 | eleq1i 2826 |
. . . . . 6
⊢ (𝑉 ∈ Fin ↔
(Vtx‘𝐺) ∈
Fin) |
16 | 8 | eleq1i 2826 |
. . . . . 6
⊢ (𝐹 ∈ Fin ↔ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) |
17 | 14, 15, 16 | 3imtr4i 281 |
. . . . 5
⊢ (𝑉 ∈ Fin → 𝐹 ∈ Fin) |
18 | 17 | adantr 472 |
. . . 4
⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐹 ∈ Fin) |
19 | 18 | adantr 472 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐹 ∈
Fin) |
20 | 6 | finrusgrfusgr 26667 |
. . . . . . 7
⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
21 | 20 | ancoms 468 |
. . . . . 6
⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph) |
22 | | fusgrfis 26417 |
. . . . . 6
⊢ (𝐺 ∈ FinUSGraph →
(Edg‘𝐺) ∈
Fin) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (Edg‘𝐺) ∈ Fin) |
24 | 23 | adantr 472 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (Edg‘𝐺) ∈
Fin) |
25 | | eqid 2756 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
26 | 6, 25 | nbusgrfi 26470 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧
(Edg‘𝐺) ∈ Fin
∧ 𝑋 ∈ 𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin) |
27 | 3, 24, 4, 26 | syl3anc 1477 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (𝐺 NeighbVtx 𝑋) ∈ Fin) |
28 | | hashxp 13409 |
. . 3
⊢ ((𝐹 ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (♯‘(𝐹 × (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) |
29 | 19, 27, 28 | syl2anc 696 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (♯‘(𝐹
× (𝐺 NeighbVtx 𝑋))) = ((♯‘𝐹) · (♯‘(𝐺 NeighbVtx 𝑋)))) |
30 | 6 | rusgrpropnb 26685 |
. . . . . . . . 9
⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*
∧ ∀𝑥 ∈
𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾)) |
31 | | oveq2 6817 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋)) |
32 | 31 | fveq2d 6352 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (♯‘(𝐺 NeighbVtx 𝑥)) = (♯‘(𝐺 NeighbVtx 𝑋))) |
33 | 32 | eqeq1d 2758 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
34 | 33 | rspccv 3442 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
35 | 34 | 3ad2ant3 1130 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈
ℕ0* ∧ ∀𝑥 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
36 | 30, 35 | syl 17 |
. . . . . . . 8
⊢ (𝐺RegUSGraph𝐾 → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
37 | 36 | adantl 473 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝑋 ∈ 𝑉 → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
38 | 37 | com12 32 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
39 | 38 | adantr 472 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑉 ∈ Fin ∧
𝐺RegUSGraph𝐾) → (♯‘(𝐺 NeighbVtx 𝑋)) = 𝐾)) |
40 | 39 | impcom 445 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (♯‘(𝐺
NeighbVtx 𝑋)) = 𝐾) |
41 | 40 | oveq2d 6825 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ((♯‘𝐹)
· (♯‘(𝐺
NeighbVtx 𝑋))) =
((♯‘𝐹) ·
𝐾)) |
42 | | hashcl 13335 |
. . . . 5
⊢ (𝐹 ∈ Fin →
(♯‘𝐹) ∈
ℕ0) |
43 | | nn0cn 11490 |
. . . . 5
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ ℂ) |
44 | 19, 42, 43 | 3syl 18 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (♯‘𝐹)
∈ ℂ) |
45 | 21 | adantr 472 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐺 ∈
FinUSGraph) |
46 | | simplr 809 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐺RegUSGraph𝐾) |
47 | | ne0i 4060 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) |
48 | 47 | adantr 472 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑉 ≠
∅) |
49 | 48 | adantl 473 |
. . . . . 6
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝑉 ≠
∅) |
50 | 6 | frusgrnn0 26673 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
51 | 45, 46, 49, 50 | syl3anc 1477 |
. . . . 5
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐾 ∈
ℕ0) |
52 | 51 | nn0cnd 11541 |
. . . 4
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝐾 ∈
ℂ) |
53 | 44, 52 | mulcomd 10249 |
. . 3
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ((♯‘𝐹)
· 𝐾) = (𝐾 · (♯‘𝐹))) |
54 | 41, 53 | eqtrd 2790 |
. 2
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ((♯‘𝐹)
· (♯‘(𝐺
NeighbVtx 𝑋))) = (𝐾 · (♯‘𝐹))) |
55 | 12, 29, 54 | 3eqtrd 2794 |
1
⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) |