Step | Hyp | Ref
| Expression |
1 | | eleq1w 2822 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ (𝑋𝐻(𝑁 + 2)))) |
2 | | fveq2 6353 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑅‘𝑦) = (𝑅‘𝑥)) |
3 | | oveq1 6821 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 substr 〈0, (𝑁 + 1)〉) = (𝑥 substr 〈0, (𝑁 + 1)〉)) |
4 | 2, 3 | eqeq12d 2775 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑅‘𝑦) = (𝑦 substr 〈0, (𝑁 + 1)〉) ↔ (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉))) |
5 | 1, 4 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 substr 〈0, (𝑁 + 1)〉)) ↔ (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉)))) |
6 | 5 | imbi2d 329 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 substr 〈0, (𝑁 + 1)〉))) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉))))) |
7 | | numclwwlkOLD.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
8 | | numclwwlkOLD.q |
. . . . . . . 8
⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
9 | | numclwwlkOLD.h |
. . . . . . . 8
⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) |
10 | | numclwwlkOLD.r |
. . . . . . . 8
⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr 〈0, (𝑁 + 1)〉)) |
11 | 7, 8, 9, 10 | numclwlk2lem2fvOLD 27567 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑦) = (𝑦 substr 〈0, (𝑁 + 1)〉))) |
12 | 6, 11 | chvarv 2408 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉))) |
13 | 12 | 3adant1 1125 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉))) |
14 | 13 | imp 444 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑥) = (𝑥 substr 〈0, (𝑁 + 1)〉)) |
15 | 7, 8, 9, 10 | numclwlk2lem2fOLD 27566 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁)) |
16 | 15 | ffvelrnda 6523 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑥) ∈ (𝑋𝑄𝑁)) |
17 | 14, 16 | eqeltrrd 2840 |
. . 3
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr 〈0, (𝑁 + 1)〉) ∈ (𝑋𝑄𝑁)) |
18 | 17 | ralrimiva 3104 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr 〈0, (𝑁 + 1)〉) ∈ (𝑋𝑄𝑁)) |
19 | 7, 8, 9 | numclwwlk2lem1OLD 27565 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)))) |
20 | 19 | imp 444 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) |
21 | 7, 8 | numclwwlkovq 27556 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}) |
22 | 21 | eleq2d 2825 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
23 | 22 | 3adant1 1125 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})) |
24 | | fveq1 6352 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0)) |
25 | 24 | eqeq1d 2762 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋)) |
26 | | fveq2 6353 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑢 → (lastS‘𝑤) = (lastS‘𝑢)) |
27 | 26 | neeq1d 2991 |
. . . . . . . . 9
⊢ (𝑤 = 𝑢 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑢) ≠ 𝑋)) |
28 | 25, 27 | anbi12d 749 |
. . . . . . . 8
⊢ (𝑤 = 𝑢 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))) |
29 | 28 | elrab 3504 |
. . . . . . 7
⊢ (𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))) |
30 | 23, 29 | syl6bb 276 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))) |
31 | | wwlknbp1 26968 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
32 | | 3simpc 1147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑢 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑢) = (𝑁 + 1)) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
34 | 7 | wrdeqi 13534 |
. . . . . . . . . . . . . . . . 17
⊢ Word
𝑉 = Word (Vtx‘𝐺) |
35 | 34 | eleq2i 2831 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ Word 𝑉 ↔ 𝑢 ∈ Word (Vtx‘𝐺)) |
36 | 35 | anbi1i 733 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ↔ (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1))) |
37 | 33, 36 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1))) |
38 | | simpll 807 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → 𝑢 ∈ Word 𝑉) |
39 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
40 | | 2nn 11397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℕ |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ) |
42 | 39, 41 | nnaddcld 11279 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
ℕ) |
43 | 7, 8, 9 | numclwwlkovhOLD 27564 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
44 | 42, 43 | sylan2 492 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}) |
45 | 44 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})) |
46 | | fveq1 6352 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0)) |
47 | 46 | eqeq1d 2762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋)) |
48 | | fveq1 6352 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2))) |
49 | 48, 46 | neeq12d 2993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) |
50 | 47, 49 | anbi12d 749 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) |
51 | 50 | elrab 3504 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) |
52 | 45, 51 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
53 | 52 | 3adant1 1125 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
54 | 53 | adantl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))) |
55 | 7 | clwwlknbp 27184 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2))) |
56 | | lencl 13530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ Word 𝑉 → (♯‘𝑢) ∈
ℕ0) |
57 | | simprr 813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉) |
58 | | df-2 11291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ 2 = (1 +
1) |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 2 = (1 +
1)) |
60 | 59 | oveq2d 6830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) = (𝑁 + (1 + 1))) |
61 | | nncn 11240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
62 | | 1cnd 10268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
63 | 61, 62, 62 | addassd 10274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
64 | 60, 63 | eqtr4d 2797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) = ((𝑁 + 1) + 1)) |
65 | 64 | adantl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) = ((𝑁 + 1) + 1)) |
66 | 65 | eqeq2d 2770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) →
((♯‘𝑥) = (𝑁 + 2) ↔
(♯‘𝑥) = ((𝑁 + 1) + 1))) |
67 | 66 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((♯‘𝑥) =
(𝑁 + 2) →
((((♯‘𝑢) ∈
ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1))) |
68 | 67 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((((♯‘𝑢) ∈ ℕ0
∧ (♯‘𝑢) =
(𝑁 + 1)) ∧ 𝑁 ∈ ℕ) →
(♯‘𝑥) = ((𝑁 + 1) + 1))) |
69 | 68 | impcom 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((𝑁 + 1) + 1)) |
70 | | oveq1 6821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((♯‘𝑢) =
(𝑁 + 1) →
((♯‘𝑢) + 1) =
((𝑁 + 1) +
1)) |
71 | 70 | ad3antlr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1)) |
72 | 69, 71 | eqtr4d 2797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((♯‘𝑢) + 1)) |
73 | 57, 72 | jca 555 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((♯‘𝑢) ∈ ℕ0 ∧
(♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) |
74 | 73 | exp31 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((♯‘𝑢)
∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
75 | 56, 74 | sylan 489 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
76 | 75 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
77 | 76 | 3ad2ant3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
78 | 77 | impcom 445 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) →
(((♯‘𝑥) =
(𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
79 | 78 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
80 | 79 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
81 | 55, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
82 | 81 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
83 | 82 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
84 | 54, 83 | sylbid 230 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
85 | 84 | ralrimiv 3103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) |
86 | 38, 85 | jca 555 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
87 | 86 | ex 449 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
88 | 37, 87 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
89 | 88 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))) |
90 | 89 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))) |
91 | | nfcv 2902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣𝑋 |
92 | | nfmpt21 6888 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) |
93 | 9, 92 | nfcxfr 2900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣𝐻 |
94 | | nfcv 2902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣(𝑁 + 2) |
95 | 91, 93, 94 | nfov 6840 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣(𝑋𝐻(𝑁 + 2)) |
96 | 95 | reuccats1 13700 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (♯‘𝑢)〉))) |
97 | 90, 96 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (♯‘𝑢)〉))) |
98 | 97 | imp 444 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (♯‘𝑢)〉)) |
99 | 31 | simp3d 1139 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (♯‘𝑢) = (𝑁 + 1)) |
100 | 99 | eqcomd 2766 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 + 1) = (♯‘𝑢)) |
101 | 100 | ad4antr 771 |
. . . . . . . . . . . . 13
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑁 + 1) = (♯‘𝑢)) |
102 | 101 | opeq2d 4560 |
. . . . . . . . . . . 12
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → 〈0, (𝑁 + 1)〉 = 〈0, (♯‘𝑢)〉) |
103 | 102 | oveq2d 6830 |
. . . . . . . . . . 11
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr 〈0, (𝑁 + 1)〉) = (𝑥 substr 〈0, (♯‘𝑢)〉)) |
104 | 103 | eqeq2d 2770 |
. . . . . . . . . 10
⊢
(((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉) ↔ 𝑢 = (𝑥 substr 〈0, (♯‘𝑢)〉))) |
105 | 104 | reubidva 3264 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → (∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉) ↔ ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (♯‘𝑢)〉))) |
106 | 98, 105 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) ∧ ∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)) |
107 | 106 | exp31 631 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)))) |
108 | 107 | com12 32 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)))) |
109 | 30, 108 | sylbid 230 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)))) |
110 | 109 | imp 444 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → (∃!𝑣 ∈ 𝑉 (𝑢 ++ 〈“𝑣”〉) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉))) |
111 | 20, 110 | mpd 15 |
. . 3
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)) |
112 | 111 | ralrimiva 3104 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉)) |
113 | 10 | f1ompt 6546 |
. 2
⊢ (𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁) ↔ (∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr 〈0, (𝑁 + 1)〉) ∈ (𝑋𝑄𝑁) ∧ ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr 〈0, (𝑁 + 1)〉))) |
114 | 18, 112, 113 | sylanbrc 701 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁)) |