MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f 27357
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.) (Proof shortened by AV, 23-Mar-2022.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f
StepHypRef Expression
1 nnnn0 11337 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 2z 11447 . . . . . . . . . . 11 2 ∈ ℤ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℤ)
4 nn0pzuz 11783 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
51, 3, 4syl2anc 694 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
65anim2i 592 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
763adant1 1099 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
8 numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
98numclwwlkovh 27353 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
109eleq2d 2716 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
12 fveq1 6228 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1312eqeq1d 2653 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
14 fveq1 6228 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1514, 12neeq12d 2884 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1613, 15anbi12d 747 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1716elrab 3396 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1811, 17syl6bb 276 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
19 peano2nn 11070 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
20 nnz 11437 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2120, 3zaddcld 11524 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
22 uzid 11740 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
24 nncn 11066 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 1cnd 10094 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2624, 25, 25addassd 10100 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
27 1p1e2 11172 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
2827a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
2928oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3026, 29eqtrd 2685 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3130fveq2d 6233 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3223, 31eleqtrrd 2733 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3319, 32jca 553 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
34333ad2ant3 1104 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3534adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
36 simprl 809 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺))
37 wwlksubclwwlk 27023 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
3835, 36, 37sylc 65 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺))
39 pncan1 10492 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4039eqcomd 2657 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4124, 40syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4241oveq1d 6705 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = (((𝑁 + 1) − 1) WWalksN 𝐺))
4342eleq2d 2716 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
44433ad2ant3 1104 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4544adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4638, 45mpbird 247 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺))
47 numclwwlk.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
4847clwwlknbp 26997 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)))
49 simprl 809 . . . . . . . . . . . . . . . 16 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
50 simprr 811 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
51 peano2nn0 11371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
521, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
53 nnre 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5453lep1d 10993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
55 elfz2nn0 12469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
561, 52, 54, 55syl3anbrc 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
57 2cnd 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
58 addsubass 10329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
59 2m1e1 11173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6059oveq2i 6701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6158, 60syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6224, 57, 25, 61syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6362oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6456, 63eleqtrrd 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
65 elfzp1b 12455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6620, 21, 65syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6764, 66mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
69 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 2) → (1...(#‘𝑥)) = (1...(𝑁 + 2)))
7069eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7170ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7268, 71mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(#‘𝑥)))
73 swrd0fv0 13486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7450, 72, 73syl2anc 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7574ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
7776impcom 445 . . . . . . . . . . . . . . . . . . 19 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7877ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
79 simpl 472 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8078, 79eqtrd 2685 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋)
81 swrd0fvlsw 13489 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8250, 72, 81syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8324, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8424, 57pncand 10431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8583, 84eqtr4d 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
8685fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8882, 87eqtr2d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
8988ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9190impcom 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9291neeq1d 2882 . . . . . . . . . . . . . . . . . . . . . 22 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9392biimpcd 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9493adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9594impcom 445 . . . . . . . . . . . . . . . . . . 19 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
9695adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
97 neeq2 2886 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9897eqcoms 2659 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9998adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
10096, 99mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)
10180, 100jca 553 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
10249, 101mpancom 704 . . . . . . . . . . . . . . 15 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
103102exp31 629 . . . . . . . . . . . . . 14 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
104103com23 86 . . . . . . . . . . . . 13 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
105104ancoms 468 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
10648, 105syl 17 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
107106imp 444 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
108107com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
1091083adant1 1099 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
110109imp 444 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
11146, 110jca 553 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
112111ex 449 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11318, 112sylbid 230 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
114113imp 444 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
115 3simpc 1080 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
116115adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
117 numclwwlk.q . . . . . . 7 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
11847, 117numclwwlkovq 27354 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
119116, 118syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
120119eleq2d 2716 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
121 fveq1 6228 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (𝑤‘0) = ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0))
122121eqeq1d 2653 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋))
123 fveq2 6229 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
124123neeq1d 2882 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
125122, 124anbi12d 747 . . . . 5 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
126125elrab 3396 . . . 4 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
127120, 126syl6bb 276 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
128114, 127mpbird 247 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
129 numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
130128, 129fmptd 6425 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  {crab 2945  cop 4216   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  #chash 13157  Word cword 13323   lastS clsw 13324   substr csubstr 13327  Vtxcvtx 25919   WWalksN cwwlksn 26774   ClWWalksN cclwwlkn 26981  ClWWalksNOncclwwlknon 27060   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332  df-substr 13335  df-wwlks 26778  df-wwlksn 26779  df-clwwlk 26950  df-clwwlkn 26983  df-clwwlknon 27061
This theorem is referenced by:  numclwlk2lem2f1o  27359
  Copyright terms: Public domain W3C validator