MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2fv Structured version   Visualization version   GIF version

Theorem numclwlk1lem2fv 27346
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwlk1lem2fv (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 substr ⟨0, (𝑁 − 2)⟩), (𝑊‘(𝑁 − 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑢,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)

Proof of Theorem numclwlk1lem2fv
StepHypRef Expression
1 oveq1 6697 . . 3 (𝑢 = 𝑊 → (𝑢 substr ⟨0, (𝑁 − 2)⟩) = (𝑊 substr ⟨0, (𝑁 − 2)⟩))
2 fveq1 6228 . . 3 (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
31, 2opeq12d 4441 . 2 (𝑢 = 𝑊 → ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩ = ⟨(𝑊 substr ⟨0, (𝑁 − 2)⟩), (𝑊‘(𝑁 − 1))⟩)
4 numclwwlk.t . 2 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
5 opex 4962 . 2 ⟨(𝑊 substr ⟨0, (𝑁 − 2)⟩), (𝑊‘(𝑁 − 1))⟩ ∈ V
63, 4, 5fvmpt 6321 1 (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 substr ⟨0, (𝑁 − 2)⟩), (𝑊‘(𝑁 − 1))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {crab 2945  cop 4216  cmpt 4762  cfv 5926  (class class class)co 6690  cmpt2 6692  0cc0 9974  1c1 9975  cmin 10304  2c2 11108  cuz 11725   substr csubstr 13327  Vtxcvtx 25919  ClWWalksNOncclwwlknon 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693
This theorem is referenced by:  numclwlk1lem2f1  27347  numclwlk1lem2fo  27348
  Copyright terms: Public domain W3C validator