![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6697 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 substr 〈0, (𝑁 − 2)〉) = (𝑊 substr 〈0, (𝑁 − 2)〉)) | |
2 | fveq1 6228 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
3 | 1, 2 | opeq12d 4441 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) | |
5 | opex 4962 | . 2 ⊢ 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 6321 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {crab 2945 〈cop 4216 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 1c1 9975 − cmin 10304 2c2 11108 ℤ≥cuz 11725 substr csubstr 13327 Vtxcvtx 25919 ClWWalksNOncclwwlknon 27060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 |
This theorem is referenced by: numclwlk1lem2f1 27347 numclwlk1lem2fo 27348 |
Copyright terms: Public domain | W3C validator |