MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2f1 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2f1 27116
Description: 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
numclwwlk.t 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwlk1lem2f1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝐶
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwlk1lem2f1
Dummy variables 𝑢 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.f . . 3 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
3 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
4 numclwwlk.t . . 3 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwlk1lem2f 27114 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
61, 2, 3, 4numclwlk1lem2fv 27115 . . . . . 6 (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇𝑝) = ⟨(𝑝 substr ⟨0, (𝑁 − 2)⟩), (𝑝‘(𝑁 − 1))⟩)
76ad2antrl 763 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → (𝑇𝑝) = ⟨(𝑝 substr ⟨0, (𝑁 − 2)⟩), (𝑝‘(𝑁 − 1))⟩)
81, 2, 3, 4numclwlk1lem2fv 27115 . . . . . 6 (𝑢 ∈ (𝑋𝐶𝑁) → (𝑇𝑢) = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
98ad2antll 764 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → (𝑇𝑢) = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩)
107, 9eqeq12d 2636 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑢) ↔ ⟨(𝑝 substr ⟨0, (𝑁 − 2)⟩), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩))
11 ovex 6643 . . . . . 6 (𝑝 substr ⟨0, (𝑁 − 2)⟩) ∈ V
12 fvex 6168 . . . . . 6 (𝑝‘(𝑁 − 1)) ∈ V
1311, 12opth 4915 . . . . 5 (⟨(𝑝 substr ⟨0, (𝑁 − 2)⟩), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩ ↔ ((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))))
14 uzuzle23 11689 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
153numclwwlkovgel 27111 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
1614, 15sylan2 491 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
171clwwlknbp 26786 . . . . . . . . . . 11 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁))
18173ad2ant1 1080 . . . . . . . . . 10 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → (𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁))
19 3simpc 1058 . . . . . . . . . 10 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)))
2018, 19jca 554 . . . . . . . . 9 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
2116, 20syl6bi 243 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑝 ∈ (𝑋𝐶𝑁) → ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)))))
22213adant1 1077 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑝 ∈ (𝑋𝐶𝑁) → ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)))))
233numclwwlkovgel 27111 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑢 ∈ (𝑋𝐶𝑁) ↔ (𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))
2414, 23sylan2 491 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) ↔ (𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))
251clwwlknbp 26786 . . . . . . . . . . 11 (𝑢 ∈ (𝑁 ClWWalksN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁))
26253ad2ant1 1080 . . . . . . . . . 10 ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)) → (𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁))
27 3simpc 1058 . . . . . . . . . 10 ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)) → ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))
2826, 27jca 554 . . . . . . . . 9 ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)) → ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))
2924, 28syl6bi 243 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) → ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))))
30293adant1 1077 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) → ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))))
31 simpll 789 . . . . . . . . . . 11 (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → 𝑝 ∈ Word 𝑉)
3231ad2antrl 763 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → 𝑝 ∈ Word 𝑉)
33 simprll 801 . . . . . . . . . . 11 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → 𝑢 ∈ Word 𝑉)
3433adantl 482 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → 𝑢 ∈ Word 𝑉)
35 eleq1 2686 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑝) → (𝑁 ∈ (ℤ‘3) ↔ (#‘𝑝) ∈ (ℤ‘3)))
3635eqcoms 2629 . . . . . . . . . . . . . . . 16 ((#‘𝑝) = 𝑁 → (𝑁 ∈ (ℤ‘3) ↔ (#‘𝑝) ∈ (ℤ‘3)))
37 eluz2 11653 . . . . . . . . . . . . . . . . 17 ((#‘𝑝) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (#‘𝑝) ∈ ℤ ∧ 3 ≤ (#‘𝑝)))
38 1red 10015 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) ∈ ℤ → 1 ∈ ℝ)
39 3re 11054 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℝ
4039a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) ∈ ℤ → 3 ∈ ℝ)
41 zre 11341 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) ∈ ℤ → (#‘𝑝) ∈ ℝ)
4238, 40, 413jca 1240 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑝) ∈ ℤ → (1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑝) ∈ ℝ))
43 1lt3 11156 . . . . . . . . . . . . . . . . . . . 20 1 < 3
44 ltletr 10089 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑝) ∈ ℝ) → ((1 < 3 ∧ 3 ≤ (#‘𝑝)) → 1 < (#‘𝑝)))
4544expd 452 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑝) ∈ ℝ) → (1 < 3 → (3 ≤ (#‘𝑝) → 1 < (#‘𝑝))))
4642, 43, 45mpisyl 21 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑝) ∈ ℤ → (3 ≤ (#‘𝑝) → 1 < (#‘𝑝)))
4746imp 445 . . . . . . . . . . . . . . . . . 18 (((#‘𝑝) ∈ ℤ ∧ 3 ≤ (#‘𝑝)) → 1 < (#‘𝑝))
48473adant1 1077 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℤ ∧ (#‘𝑝) ∈ ℤ ∧ 3 ≤ (#‘𝑝)) → 1 < (#‘𝑝))
4937, 48sylbi 207 . . . . . . . . . . . . . . . 16 ((#‘𝑝) ∈ (ℤ‘3) → 1 < (#‘𝑝))
5036, 49syl6bi 243 . . . . . . . . . . . . . . 15 ((#‘𝑝) = 𝑁 → (𝑁 ∈ (ℤ‘3) → 1 < (#‘𝑝)))
5150com12 32 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → ((#‘𝑝) = 𝑁 → 1 < (#‘𝑝)))
52513ad2ant3 1082 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((#‘𝑝) = 𝑁 → 1 < (#‘𝑝)))
5352com12 32 . . . . . . . . . . . 12 ((#‘𝑝) = 𝑁 → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 1 < (#‘𝑝)))
5453ad3antlr 766 . . . . . . . . . . 11 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 1 < (#‘𝑝)))
5554impcom 446 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → 1 < (#‘𝑝))
56 2swrd2eqwrdeq 13646 . . . . . . . . . 10 ((𝑝 ∈ Word 𝑉𝑢 ∈ Word 𝑉 ∧ 1 < (#‘𝑝)) → (𝑝 = 𝑢 ↔ ((#‘𝑝) = (#‘𝑢) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)))))
5732, 34, 55, 56syl3anc 1323 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (𝑝 = 𝑢 ↔ ((#‘𝑝) = (#‘𝑢) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)))))
58 eqtr3 2642 . . . . . . . . . . . . . . . 16 (((#‘𝑝) = 𝑁 ∧ (#‘𝑢) = 𝑁) → (#‘𝑝) = (#‘𝑢))
5958expcom 451 . . . . . . . . . . . . . . 15 ((#‘𝑢) = 𝑁 → ((#‘𝑝) = 𝑁 → (#‘𝑝) = (#‘𝑢)))
6059ad2antlr 762 . . . . . . . . . . . . . 14 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))) → ((#‘𝑝) = 𝑁 → (#‘𝑝) = (#‘𝑢)))
6160com12 32 . . . . . . . . . . . . 13 ((#‘𝑝) = 𝑁 → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))) → (#‘𝑝) = (#‘𝑢)))
6261ad2antlr 762 . . . . . . . . . . . 12 (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))) → (#‘𝑝) = (#‘𝑢)))
6362imp 445 . . . . . . . . . . 11 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (#‘𝑝) = (#‘𝑢))
6463adantl 482 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (#‘𝑝) = (#‘𝑢))
6564biantrurd 529 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((#‘𝑝) = (#‘𝑢) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)))))
66 3anan12 1049 . . . . . . . . . . 11 (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢))))
6766a1i 11 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)))))
68 eqeq2 2632 . . . . . . . . . . . . . . . . . . 19 ((𝑝‘0) = 𝑋 → ((𝑝‘(𝑁 − 2)) = (𝑝‘0) ↔ (𝑝‘(𝑁 − 2)) = 𝑋))
69 oveq1 6622 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = (#‘𝑝) → (𝑁 − 2) = ((#‘𝑝) − 2))
7069eqcoms 2629 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑝) = 𝑁 → (𝑁 − 2) = ((#‘𝑝) − 2))
7170fveq2d 6162 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) = 𝑁 → (𝑝‘(𝑁 − 2)) = (𝑝‘((#‘𝑝) − 2)))
7271eqeq1d 2623 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑝) = 𝑁 → ((𝑝‘(𝑁 − 2)) = 𝑋 ↔ (𝑝‘((#‘𝑝) − 2)) = 𝑋))
7372biimpcd 239 . . . . . . . . . . . . . . . . . . 19 ((𝑝‘(𝑁 − 2)) = 𝑋 → ((#‘𝑝) = 𝑁 → (𝑝‘((#‘𝑝) − 2)) = 𝑋))
7468, 73syl6bi 243 . . . . . . . . . . . . . . . . . 18 ((𝑝‘0) = 𝑋 → ((𝑝‘(𝑁 − 2)) = (𝑝‘0) → ((#‘𝑝) = 𝑁 → (𝑝‘((#‘𝑝) − 2)) = 𝑋)))
7574imp 445 . . . . . . . . . . . . . . . . 17 (((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → ((#‘𝑝) = 𝑁 → (𝑝‘((#‘𝑝) − 2)) = 𝑋))
7675com12 32 . . . . . . . . . . . . . . . 16 ((#‘𝑝) = 𝑁 → (((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → (𝑝‘((#‘𝑝) − 2)) = 𝑋))
7776adantl 482 . . . . . . . . . . . . . . 15 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) → (((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)) → (𝑝‘((#‘𝑝) − 2)) = 𝑋))
7877imp 445 . . . . . . . . . . . . . 14 (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (𝑝‘((#‘𝑝) − 2)) = 𝑋)
7978adantr 481 . . . . . . . . . . . . 13 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (𝑝‘((#‘𝑝) − 2)) = 𝑋)
80 oveq1 6622 . . . . . . . . . . . . . . . 16 ((#‘𝑝) = 𝑁 → ((#‘𝑝) − 2) = (𝑁 − 2))
8180fveq2d 6162 . . . . . . . . . . . . . . 15 ((#‘𝑝) = 𝑁 → (𝑢‘((#‘𝑝) − 2)) = (𝑢‘(𝑁 − 2)))
82 eqeq1 2625 . . . . . . . . . . . . . . . . . 18 ((𝑢‘0) = (𝑢‘(𝑁 − 2)) → ((𝑢‘0) = 𝑋 ↔ (𝑢‘(𝑁 − 2)) = 𝑋))
8382eqcoms 2629 . . . . . . . . . . . . . . . . 17 ((𝑢‘(𝑁 − 2)) = (𝑢‘0) → ((𝑢‘0) = 𝑋 ↔ (𝑢‘(𝑁 − 2)) = 𝑋))
8483biimpac 503 . . . . . . . . . . . . . . . 16 (((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)) → (𝑢‘(𝑁 − 2)) = 𝑋)
8584adantl 482 . . . . . . . . . . . . . . 15 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))) → (𝑢‘(𝑁 − 2)) = 𝑋)
8681, 85sylan9eq 2675 . . . . . . . . . . . . . 14 (((#‘𝑝) = 𝑁 ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (𝑢‘((#‘𝑝) − 2)) = 𝑋)
8786ad4ant24 1295 . . . . . . . . . . . . 13 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (𝑢‘((#‘𝑝) − 2)) = 𝑋)
8879, 87eqtr4d 2658 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)))
8988adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)))
9089biantrurd 529 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)))))
9180opeq2d 4384 . . . . . . . . . . . . . . 15 ((#‘𝑝) = 𝑁 → ⟨0, ((#‘𝑝) − 2)⟩ = ⟨0, (𝑁 − 2)⟩)
9291oveq2d 6631 . . . . . . . . . . . . . 14 ((#‘𝑝) = 𝑁 → (𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑝 substr ⟨0, (𝑁 − 2)⟩))
9391oveq2d 6631 . . . . . . . . . . . . . 14 ((#‘𝑝) = 𝑁 → (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩))
9492, 93eqeq12d 2636 . . . . . . . . . . . . 13 ((#‘𝑝) = 𝑁 → ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ↔ (𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩)))
9594ad3antlr 766 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ↔ (𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩)))
9695adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → ((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ↔ (𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩)))
97 lsw 13306 . . . . . . . . . . . . . . 15 (𝑝 ∈ Word 𝑉 → ( lastS ‘𝑝) = (𝑝‘((#‘𝑝) − 1)))
98 oveq1 6622 . . . . . . . . . . . . . . . 16 ((#‘𝑝) = 𝑁 → ((#‘𝑝) − 1) = (𝑁 − 1))
9998fveq2d 6162 . . . . . . . . . . . . . . 15 ((#‘𝑝) = 𝑁 → (𝑝‘((#‘𝑝) − 1)) = (𝑝‘(𝑁 − 1)))
10097, 99sylan9eq 2675 . . . . . . . . . . . . . 14 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) → ( lastS ‘𝑝) = (𝑝‘(𝑁 − 1)))
101100adantr 481 . . . . . . . . . . . . 13 (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → ( lastS ‘𝑝) = (𝑝‘(𝑁 − 1)))
102 lsw 13306 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝑉 → ( lastS ‘𝑢) = (𝑢‘((#‘𝑢) − 1)))
103102adantr 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) → ( lastS ‘𝑢) = (𝑢‘((#‘𝑢) − 1)))
104 oveq1 6622 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (#‘𝑢) → (𝑁 − 1) = ((#‘𝑢) − 1))
105104eqcoms 2629 . . . . . . . . . . . . . . . . . 18 ((#‘𝑢) = 𝑁 → (𝑁 − 1) = ((#‘𝑢) − 1))
106105fveq2d 6162 . . . . . . . . . . . . . . . . 17 ((#‘𝑢) = 𝑁 → (𝑢‘(𝑁 − 1)) = (𝑢‘((#‘𝑢) − 1)))
107106eqeq2d 2631 . . . . . . . . . . . . . . . 16 ((#‘𝑢) = 𝑁 → (( lastS ‘𝑢) = (𝑢‘(𝑁 − 1)) ↔ ( lastS ‘𝑢) = (𝑢‘((#‘𝑢) − 1))))
108107adantl 482 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) → (( lastS ‘𝑢) = (𝑢‘(𝑁 − 1)) ↔ ( lastS ‘𝑢) = (𝑢‘((#‘𝑢) − 1))))
109103, 108mpbird 247 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) → ( lastS ‘𝑢) = (𝑢‘(𝑁 − 1)))
110109adantr 481 . . . . . . . . . . . . 13 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))) → ( lastS ‘𝑢) = (𝑢‘(𝑁 − 1)))
111101, 110eqeqan12d 2637 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (( lastS ‘𝑝) = ( lastS ‘𝑢) ↔ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))))
112111adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (( lastS ‘𝑝) = ( lastS ‘𝑢) ↔ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))))
11396, 112anbi12d 746 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1)))))
11467, 90, 1133bitr2d 296 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (((𝑝 substr ⟨0, ((#‘𝑝) − 2)⟩) = (𝑢 substr ⟨0, ((#‘𝑝) − 2)⟩) ∧ (𝑝‘((#‘𝑝) − 2)) = (𝑢‘((#‘𝑝) − 2)) ∧ ( lastS ‘𝑝) = ( lastS ‘𝑢)) ↔ ((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1)))))
11557, 65, 1143bitr2d 296 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0))))) → (𝑝 = 𝑢 ↔ ((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1)))))
116115exbiri 651 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = 𝑁) ∧ ((𝑢‘0) = 𝑋 ∧ (𝑢‘(𝑁 − 2)) = (𝑢‘0)))) → (((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) → 𝑝 = 𝑢)))
11722, 30, 116syl2and 500 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁)) → (((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) → 𝑝 = 𝑢)))
118117imp 445 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → (((𝑝 substr ⟨0, (𝑁 − 2)⟩) = (𝑢 substr ⟨0, (𝑁 − 2)⟩) ∧ (𝑝‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) → 𝑝 = 𝑢))
11913, 118syl5bi 232 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → (⟨(𝑝 substr ⟨0, (𝑁 − 2)⟩), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑢 substr ⟨0, (𝑁 − 2)⟩), (𝑢‘(𝑁 − 1))⟩ → 𝑝 = 𝑢))
12010, 119sylbid 230 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑢 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑢) → 𝑝 = 𝑢))
121120ralrimivva 2967 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑢 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑢) → 𝑝 = 𝑢))
122 dff13 6477 . 2 (𝑇:(𝑋𝐶𝑁)–1-1→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑢 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑢) → 𝑝 = 𝑢)))
1235, 121, 122sylanbrc 697 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  {crab 2912  cop 4161   class class class wbr 4623  cmpt 4683   × cxp 5082  wf 5853  1-1wf1 5854  cfv 5857  (class class class)co 6615  cmpt2 6617  cr 9895  0cc0 9896  1c1 9897   < clt 10034  cle 10035  cmin 10226  cn 10980  2c2 11030  3c3 11031  cz 11337  cuz 11647  #chash 13073  Word cword 13246   lastS clsw 13247   substr csubstr 13250  Vtxcvtx 25808   USGraph cusgr 25971   NeighbVtx cnbgr 26145   ClWWalksN cclwwlksn 26777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-lsw 13255  df-concat 13256  df-s1 13257  df-substr 13258  df-s2 13546  df-edg 25874  df-upgr 25907  df-umgr 25908  df-usgr 25973  df-nbgr 26149  df-clwwlks 26778  df-clwwlksn 26779
This theorem is referenced by:  numclwlk1lem2f1o  27118
  Copyright terms: Public domain W3C validator