MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numaddc Structured version   Visualization version   GIF version

Theorem numaddc 11599
Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numaddc.8 𝐹 ∈ ℕ0
numaddc.9 ((𝐴 + 𝐶) + 1) = 𝐸
numaddc.10 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
Assertion
Ref Expression
numaddc (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numaddc
StepHypRef Expression
1 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
2 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
3 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
4 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
52, 3, 4numcl 11548 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2726 . . . . 5 𝑀 ∈ ℕ0
76nn0cni 11342 . . . 4 𝑀 ∈ ℂ
87mulid1i 10080 . . 3 (𝑀 · 1) = 𝑀
98oveq1i 6700 . 2 ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁)
10 numma.4 . . 3 𝐶 ∈ ℕ0
11 numma.5 . . 3 𝐷 ∈ ℕ0
12 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
13 1nn0 11346 . . 3 1 ∈ ℕ0
14 numaddc.8 . . 3 𝐹 ∈ ℕ0
153nn0cni 11342 . . . . . 6 𝐴 ∈ ℂ
1615mulid1i 10080 . . . . 5 (𝐴 · 1) = 𝐴
1716oveq1i 6700 . . . 4 ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1))
1810nn0cni 11342 . . . . 5 𝐶 ∈ ℂ
19 ax-1cn 10032 . . . . 5 1 ∈ ℂ
2015, 18, 19addassi 10086 . . . 4 ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1))
21 numaddc.9 . . . 4 ((𝐴 + 𝐶) + 1) = 𝐸
2217, 20, 213eqtr2i 2679 . . 3 ((𝐴 · 1) + (𝐶 + 1)) = 𝐸
234nn0cni 11342 . . . . . 6 𝐵 ∈ ℂ
2423mulid1i 10080 . . . . 5 (𝐵 · 1) = 𝐵
2524oveq1i 6700 . . . 4 ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷)
26 numaddc.10 . . . 4 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
2725, 26eqtri 2673 . . 3 ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 11596 . 2 ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
299, 28eqtr3i 2675 1 (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  (class class class)co 6690  1c1 9975   + caddc 9977   · cmul 9979  0cn0 11330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-nn 11059  df-n0 11331
This theorem is referenced by:  decaddc  11610  decaddcOLD  11611
  Copyright terms: Public domain W3C validator