![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nulsslt | Structured version Visualization version GIF version |
Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulsslt | ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3361 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ V) | |
2 | 0ex 4921 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | jctil 503 | . 2 ⊢ (𝐴 ∈ 𝒫 No → (∅ ∈ V ∧ 𝐴 ∈ V)) |
4 | 0ss 4114 | . . . 4 ⊢ ∅ ⊆ No | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
6 | elpwi 4305 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
7 | ral0 4215 | . . . 4 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥 <s 𝑦 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥 <s 𝑦) |
9 | 5, 6, 8 | 3jca 1121 | . 2 ⊢ (𝐴 ∈ 𝒫 No → (∅ ⊆ No ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥 <s 𝑦)) |
10 | brsslt 32231 | . 2 ⊢ (∅ <<s 𝐴 ↔ ((∅ ∈ V ∧ 𝐴 ∈ V) ∧ (∅ ⊆ No ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥 <s 𝑦))) | |
11 | 3, 9, 10 | sylanbrc 564 | 1 ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 ∀wral 3060 Vcvv 3349 ⊆ wss 3721 ∅c0 4061 𝒫 cpw 4295 class class class wbr 4784 No csur 32124 <s cslt 32125 <<s csslt 32227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-sslt 32228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |