![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrval | Structured version Visualization version GIF version |
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrfval 21030 | . . . 4 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
3 | 2 | fveq1d 6354 | . . 3 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
4 | 3 | adantr 472 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆)) |
5 | 1 | topopn 20913 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | elpw2g 4976 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
8 | 7 | biimpar 503 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
9 | inex1g 4953 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
10 | 9 | adantr 472 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V) |
11 | uniexg 7120 | . . . 4 ⊢ ((𝐽 ∩ 𝒫 𝑆) ∈ V → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) |
13 | pweq 4305 | . . . . . 6 ⊢ (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆) | |
14 | 13 | ineq2d 3957 | . . . . 5 ⊢ (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆)) |
15 | 14 | unieqd 4598 | . . . 4 ⊢ (𝑥 = 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑥) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
16 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) | |
17 | 15, 16 | fvmptg 6442 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝑋 ∧ ∪ (𝐽 ∩ 𝒫 𝑆) ∈ V) → ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
18 | 8, 12, 17 | syl2anc 696 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
19 | 4, 18 | eqtrd 2794 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 ↦ cmpt 4881 ‘cfv 6049 Topctop 20900 intcnt 21023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-top 20901 df-ntr 21026 |
This theorem is referenced by: ntropn 21055 clsval2 21056 ntrss2 21063 ssntr 21064 isopn3 21072 ntreq0 21083 |
Copyright terms: Public domain | W3C validator |