MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrss Structured version   Visualization version   GIF version

Theorem ntrss 20907
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ntrss
StepHypRef Expression
1 sscon 3777 . . . . . . 7 (𝑇𝑆 → (𝑋𝑆) ⊆ (𝑋𝑇))
21adantl 481 . . . . . 6 ((𝑆𝑋𝑇𝑆) → (𝑋𝑆) ⊆ (𝑋𝑇))
3 difss 3770 . . . . . 6 (𝑋𝑇) ⊆ 𝑋
42, 3jctil 559 . . . . 5 ((𝑆𝑋𝑇𝑆) → ((𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇)))
5 clscld.1 . . . . . . 7 𝑋 = 𝐽
65clsss 20906 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇)) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
763expb 1285 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇))) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
84, 7sylan2 490 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
98sscond 3780 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
10 sstr2 3643 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
1110impcom 445 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
125ntrval2 20903 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))))
1311, 12sylan2 490 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))))
145ntrval2 20903 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
1514adantrr 753 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
169, 13, 153sstr4d 3681 . 2 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
17163impb 1279 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cdif 3604  wss 3607   cuni 4468  cfv 5926  Topctop 20746  intcnt 20869  clsccl 20870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-top 20747  df-cld 20871  df-ntr 20872  df-cls 20873
This theorem is referenced by:  ntrin  20913  ntrcls0  20928  dvreslem  23718  dvres2lem  23719  dvaddbr  23746  dvmulbr  23747  dvcnvrelem2  23826  ntruni  32447  cldregopn  32451  limciccioolb  40171  limcicciooub  40187  cncfiooicclem1  40424
  Copyright terms: Public domain W3C validator