Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 38941
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top → ran 𝐼𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (int‘𝐽)
21rneqi 5508 . 2 ran 𝐼 = ran (int‘𝐽)
3 vpwex 4999 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 4953 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 7120 . . . . . 6 (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 3063 . . . . 5 𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2903 . . . . . 6 𝑠𝒫 𝑋
87fnmptf 6178 . . . . 5 (∀𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = 𝐽
1110ntrfval 21051 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 6143 . . . 4 (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 247 . . 3 (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋)
14 elpwi 4313 . . . . 5 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1510ntropn 21076 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽)
1615ex 449 . . . . 5 (𝐽 ∈ Top → (𝑠𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1714, 16syl5 34 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1817ralrimiv 3104 . . 3 (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽)
19 fnfvrnss 6555 . . 3 (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽)
2013, 18, 19syl2anc 696 . 2 (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽)
212, 20syl5eqss 3791 1 (𝐽 ∈ Top → ran 𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  wral 3051  Vcvv 3341  cin 3715  wss 3716  𝒫 cpw 4303   cuni 4589  cmpt 4882  ran crn 5268   Fn wfn 6045  cfv 6050  Topctop 20921  intcnt 21044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-top 20922  df-ntr 21047
This theorem is referenced by:  ntrf  38942
  Copyright terms: Public domain W3C validator