![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrrn | Structured version Visualization version GIF version |
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrrn | ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
2 | 1 | rneqi 5508 | . 2 ⊢ ran 𝐼 = ran (int‘𝐽) |
3 | vpwex 4999 | . . . . . . . 8 ⊢ 𝒫 𝑠 ∈ V | |
4 | 3 | inex2 4953 | . . . . . . 7 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
5 | 4 | uniex 7120 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
6 | 5 | rgenw 3063 | . . . . 5 ⊢ ∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
7 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑠𝒫 𝑋 | |
8 | 7 | fnmptf 6178 | . . . . 5 ⊢ (∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
9 | 6, 8 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
10 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
11 | 10 | ntrfval 21051 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
12 | 11 | fneq1d 6143 | . . . 4 ⊢ (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
13 | 9, 12 | mpbird 247 | . . 3 ⊢ (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋) |
14 | elpwi 4313 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
15 | 10 | ntropn 21076 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽) |
16 | 15 | ex 449 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑠 ⊆ 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
17 | 14, 16 | syl5 34 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
18 | 17 | ralrimiv 3104 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) |
19 | fnfvrnss 6555 | . . 3 ⊢ (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽) | |
20 | 13, 18, 19 | syl2anc 696 | . 2 ⊢ (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽) |
21 | 2, 20 | syl5eqss 3791 | 1 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∀wral 3051 Vcvv 3341 ∩ cin 3715 ⊆ wss 3716 𝒫 cpw 4303 ∪ cuni 4589 ↦ cmpt 4882 ran crn 5268 Fn wfn 6045 ‘cfv 6050 Topctop 20921 intcnt 21044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-top 20922 df-ntr 21047 |
This theorem is referenced by: ntrf 38942 |
Copyright terms: Public domain | W3C validator |