![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrneineine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
5 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 5 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
7 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 38899 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
9 | 8 | rexbidva 3187 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋))) |
10 | 1, 2, 3 | ntrneinex 38895 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
11 | elmapi 8047 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
13 | 12, 5 | ffvelrnd 6524 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4314 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | 14 | sseld 3743 | . . . . . 6 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) → 𝑠 ∈ 𝒫 𝐵)) |
16 | 15 | pm4.71rd 670 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
17 | 16 | exbidv 1999 | . . . 4 ⊢ (𝜑 → (∃𝑠 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
18 | 17 | bicomd 213 | . . 3 ⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋))) |
19 | df-rex 3056 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋))) | |
20 | n0 4074 | . . 3 ⊢ ((𝑁‘𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋)) | |
21 | 18, 19, 20 | 3bitr4g 303 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ ∅)) |
22 | 9, 21 | bitrd 268 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 {crab 3054 Vcvv 3340 ∅c0 4058 𝒫 cpw 4302 class class class wbr 4804 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-map 8027 |
This theorem is referenced by: ntrneineine0 38905 |
Copyright terms: Public domain | W3C validator |