Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik13 Structured version   Visualization version   GIF version

Theorem ntrneik13 38216
Description: The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik13
StepHypRef Expression
1 dfss3 3585 . . . . . . . . 9 ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)))
2 ntrnei.o . . . . . . . . . . . . . . 15 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . . . . . . . . . 15 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . . . . . . . . . 15 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 38194 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
6 elmapi 7864 . . . . . . . . . . . . . 14 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
75, 6syl 17 . . . . . . . . . . . . 13 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
87ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
92, 3, 4ntrneibex 38191 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ V)
109ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11 simplr 791 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
12 elpwi 4159 . . . . . . . . . . . . . 14 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
13 ssinss1 3833 . . . . . . . . . . . . . 14 (𝑠𝐵 → (𝑠𝑡) ⊆ 𝐵)
1411, 12, 133syl 18 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
1510, 14sselpwd 4798 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
168, 15ffvelrnd 6346 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ∈ 𝒫 𝐵)
1716elpwid 4161 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ⊆ 𝐵)
18 ralss 3660 . . . . . . . . . 10 ((𝐼‘(𝑠𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)))))
1917, 18syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)))))
201, 19syl5bb 272 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)))))
21 dfss3 3585 . . . . . . . . 9 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)))
227ffvelrnda 6345 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2322elpwid 4161 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
24 ssinss1 3833 . . . . . . . . . . . 12 ((𝐼𝑠) ⊆ 𝐵 → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ 𝐵)
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ 𝐵)
2625adantr 481 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ 𝐵)
27 ralss 3660 . . . . . . . . . 10 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
2826, 27syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
2921, 28syl5bb 272 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3020, 29anbi12d 746 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡))))))
31 eqss 3610 . . . . . . 7 ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
32 ralbiim 3065 . . . . . . 7 (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3330, 31, 323bitr4g 303 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)))))
344ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
35 simpr 477 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
369adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
37 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
3837elpwid 4161 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠𝐵)
3938, 13syl 17 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
4036, 39sselpwd 4798 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
4140ad2antrr 761 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
422, 3, 34, 35, 41ntrneiel 38199 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ (𝑠𝑡) ∈ (𝑁𝑥)))
43 elin 3788 . . . . . . . . 9 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
44 simpllr 798 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
452, 3, 34, 35, 44ntrneiel 38199 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
46 simplr 791 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
472, 3, 34, 35, 46ntrneiel 38199 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4845, 47anbi12d 746 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
4943, 48syl5bb 272 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
5042, 49bibi12d 335 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))) ↔ ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
5150ralbidva 2982 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
5233, 51bitrd 268 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
5352ralbidva 2982 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
54 ralcom 3093 . . . 4 (∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
5553, 54syl6bb 276 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
5655ralbidva 2982 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
57 ralcom 3093 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
5856, 57syl6bb 276 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909  {crab 2913  Vcvv 3195  cin 3566  wss 3567  𝒫 cpw 4149   class class class wbr 4644  cmpt 4720  wf 5872  cfv 5876  (class class class)co 6635  cmpt2 6637  𝑚 cmap 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator