Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiiex Structured version   Visualization version   GIF version

Theorem ntrneiiex 38691
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneiiex (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneiiex
StepHypRef Expression
1 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneif1o 38690 . . . 4 (𝜑𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
5 f1orel 6178 . . . 4 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → Rel 𝐹)
64, 5syl 17 . . 3 (𝜑 → Rel 𝐹)
7 releldm 5390 . . 3 ((Rel 𝐹𝐼𝐹𝑁) → 𝐼 ∈ dom 𝐹)
86, 3, 7syl2anc 694 . 2 (𝜑𝐼 ∈ dom 𝐹)
9 f1odm 6179 . . 3 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → dom 𝐹 = (𝒫 𝐵𝑚 𝒫 𝐵))
104, 9syl 17 . 2 (𝜑 → dom 𝐹 = (𝒫 𝐵𝑚 𝒫 𝐵))
118, 10eleqtrd 2732 1 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  dom cdm 5143  Rel wrel 5148  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901
This theorem is referenced by:  ntrneifv1  38694  ntrneifv2  38695  ntrneiel  38696  ntrneifv4  38700  ntrneiel2  38701  ntrneicls00  38704  ntrneicls11  38705  ntrneiiso  38706  ntrneik2  38707  ntrneikb  38709  ntrneixb  38710  ntrneik3  38711  ntrneix3  38712  ntrneik13  38713  ntrneix13  38714  ntrneik4w  38715  ntrneik4  38716
  Copyright terms: Public domain W3C validator