![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneiel | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ntrnei.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrneiel | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
2 | fveq2 6229 | . . . . 5 ⊢ (𝑚 = 𝑆 → (𝐼‘𝑚) = (𝐼‘𝑆)) | |
3 | 2 | eleq2d 2716 | . . . 4 ⊢ (𝑚 = 𝑆 → (𝑋 ∈ (𝐼‘𝑚) ↔ 𝑋 ∈ (𝐼‘𝑆))) |
4 | 3 | elrab3 3397 | . . 3 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑋 ∈ (𝐼‘𝑆))) |
6 | ntrnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
7 | ntrnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
8 | ntrnei.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
9 | 6, 7, 8 | ntrneibex 38688 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | pwexg 4880 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
12 | 6, 7, 8 | ntrneiiex 38691 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
13 | eqid 2651 | . . . . 5 ⊢ (𝐹‘𝐼) = (𝐹‘𝐼) | |
14 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | 6, 11, 9, 7, 12, 13, 14 | fsovfvfvd 38622 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)}) |
16 | 6, 7, 8 | ntrneifv1 38694 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) |
17 | 16 | fveq1d 6231 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐼)‘𝑋) = (𝑁‘𝑋)) |
18 | 15, 17 | eqtr3d 2687 | . . 3 ⊢ (𝜑 → {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} = (𝑁‘𝑋)) |
19 | 18 | eleq2d 2716 | . 2 ⊢ (𝜑 → (𝑆 ∈ {𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑚)} ↔ 𝑆 ∈ (𝑁‘𝑋))) |
20 | 5, 19 | bitr3d 270 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 𝒫 cpw 4191 class class class wbr 4685 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ↑𝑚 cmap 7899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 |
This theorem is referenced by: ntrneifv3 38697 ntrneineine0lem 38698 ntrneineine1lem 38699 ntrneifv4 38700 ntrneiel2 38701 ntrneicls00 38704 ntrneicls11 38705 ntrneiiso 38706 ntrneik2 38707 ntrneix2 38708 ntrneikb 38709 ntrneixb 38710 ntrneik3 38711 ntrneix3 38712 ntrneik13 38713 ntrneix13 38714 ntrneik4w 38715 ntrneik4 38716 clsneiel1 38723 neicvgel1 38734 |
Copyright terms: Public domain | W3C validator |