![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls11 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicls11 | ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . . . . . 9 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . . . . 9 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneiiex 38691 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
5 | elmapi 7921 | . . . . . . . 8 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 0elpw 4864 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 𝐵 | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
9 | 6, 8 | ffvelrnd 6400 | . . . . . 6 ⊢ (𝜑 → (𝐼‘∅) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4203 | . . . . 5 ⊢ (𝜑 → (𝐼‘∅) ⊆ 𝐵) |
11 | reldisj 4053 | . . . . 5 ⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
13 | 12 | bicomd 213 | . . 3 ⊢ (𝜑 → ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ ((𝐼‘∅) ∩ 𝐵) = ∅)) |
14 | difid 3981 | . . . . 5 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
15 | 14 | sseq2i 3663 | . . . 4 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) ⊆ ∅) |
16 | ss0b 4006 | . . . 4 ⊢ ((𝐼‘∅) ⊆ ∅ ↔ (𝐼‘∅) = ∅) | |
17 | 15, 16 | bitri 264 | . . 3 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) = ∅) |
18 | disjr 4051 | . . 3 ⊢ (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅)) | |
19 | 13, 17, 18 | 3bitr3g 302 | . 2 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅))) |
20 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
21 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
22 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝒫 𝐵) |
23 | 1, 2, 20, 21, 22 | ntrneiel 38696 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘∅) ↔ ∅ ∈ (𝑁‘𝑥))) |
24 | 23 | notbid 307 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ (𝐼‘∅) ↔ ¬ ∅ ∈ (𝑁‘𝑥))) |
25 | 24 | ralbidva 3014 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅) ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
26 | 19, 25 | bitrd 268 | 1 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 class class class wbr 4685 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ↑𝑚 cmap 7899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |