Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls11 Structured version   Visualization version   GIF version

Theorem ntrneicls11 38705
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneicls11 (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥𝐵 ¬ ∅ ∈ (𝑁𝑥)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneicls11
StepHypRef Expression
1 ntrnei.o . . . . . . . . 9 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . . . 9 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . . . 9 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 38691 . . . . . . . 8 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
5 elmapi 7921 . . . . . . . 8 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . . . 7 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
7 0elpw 4864 . . . . . . . 8 ∅ ∈ 𝒫 𝐵
87a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝒫 𝐵)
96, 8ffvelrnd 6400 . . . . . 6 (𝜑 → (𝐼‘∅) ∈ 𝒫 𝐵)
109elpwid 4203 . . . . 5 (𝜑 → (𝐼‘∅) ⊆ 𝐵)
11 reldisj 4053 . . . . 5 ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
1210, 11syl 17 . . . 4 (𝜑 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵𝐵)))
1312bicomd 213 . . 3 (𝜑 → ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ ((𝐼‘∅) ∩ 𝐵) = ∅))
14 difid 3981 . . . . 5 (𝐵𝐵) = ∅
1514sseq2i 3663 . . . 4 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) ⊆ ∅)
16 ss0b 4006 . . . 4 ((𝐼‘∅) ⊆ ∅ ↔ (𝐼‘∅) = ∅)
1715, 16bitri 264 . . 3 ((𝐼‘∅) ⊆ (𝐵𝐵) ↔ (𝐼‘∅) = ∅)
18 disjr 4051 . . 3 (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝐼‘∅))
1913, 17, 183bitr3g 302 . 2 (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝐼‘∅)))
203adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
21 simpr 476 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
227a1i 11 . . . . 5 ((𝜑𝑥𝐵) → ∅ ∈ 𝒫 𝐵)
231, 2, 20, 21, 22ntrneiel 38696 . . . 4 ((𝜑𝑥𝐵) → (𝑥 ∈ (𝐼‘∅) ↔ ∅ ∈ (𝑁𝑥)))
2423notbid 307 . . 3 ((𝜑𝑥𝐵) → (¬ 𝑥 ∈ (𝐼‘∅) ↔ ¬ ∅ ∈ (𝑁𝑥)))
2524ralbidva 3014 . 2 (𝜑 → (∀𝑥𝐵 ¬ 𝑥 ∈ (𝐼‘∅) ↔ ∀𝑥𝐵 ¬ ∅ ∈ (𝑁𝑥)))
2619, 25bitrd 268 1 (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥𝐵 ¬ ∅ ∈ (𝑁𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator