Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneibex Structured version   Visualization version   GIF version

Theorem ntrneibex 38890
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneibex (𝜑𝐵 ∈ V)
Distinct variable groups:   𝑖,𝑗,𝑘   𝑖,𝑙,𝑗   𝑖,𝑚,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneibex
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 oveq2 6800 . . . . 5 (𝑖 = 𝑎 → (𝒫 𝑗𝑚 𝑖) = (𝒫 𝑗𝑚 𝑎))
3 rabeq 3341 . . . . . 6 (𝑖 = 𝑎 → {𝑚𝑖𝑙 ∈ (𝑘𝑚)} = {𝑚𝑎𝑙 ∈ (𝑘𝑚)})
43mpteq2dv 4877 . . . . 5 (𝑖 = 𝑎 → (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
52, 4mpteq12dv 4865 . . . 4 (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑗𝑚 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
6 pweq 4298 . . . . . 6 (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏)
76oveq1d 6807 . . . . 5 (𝑗 = 𝑏 → (𝒫 𝑗𝑚 𝑎) = (𝒫 𝑏𝑚 𝑎))
8 mpteq1 4869 . . . . 5 (𝑗 = 𝑏 → (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
97, 8mpteq12dv 4865 . . . 4 (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗𝑚 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
105, 9cbvmpt2v 6881 . . 3 (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
111, 10eqtri 2792 . 2 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
12 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
13 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
1413a1i 11 . 2 (𝜑𝐹 = (𝒫 𝐵𝑂𝐵))
1511, 12, 14brovmptimex2 38846 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  𝒫 cpw 4295   class class class wbr 4784  cmpt 4861  cfv 6031  (class class class)co 6792  cmpt2 6794  𝑚 cmap 8008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-xp 5255  df-rel 5256  df-dm 5259  df-iota 5994  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797
This theorem is referenced by:  ntrneircomplex  38891  ntrneif1o  38892  ntrneicnv  38895  ntrneiel  38898  ntrneicls00  38906  ntrneik3  38913  ntrneix3  38914  ntrneik13  38915  ntrneix13  38916
  Copyright terms: Public domain W3C validator