MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmul Structured version   Visualization version   GIF version

Theorem ntrivcvgmul 14833
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmul.1 𝑍 = (ℤ𝑀)
ntrivcvgmul.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvgmul.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmul.5 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
ntrivcvgmul.6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmul.7 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmul (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑚,𝐹,𝑧   𝑛,𝐺,𝑦   𝑚,𝐻,𝑛,𝑦,𝑧,𝑝   𝜑,𝑚   𝑤,𝑚,𝑦,𝑧   𝑛,𝑝   𝜑,𝑛   𝑤,𝑛,𝑦,𝑧,𝑝   𝜑,𝑦,𝑧   𝑦,𝑤,𝑧   𝑚,𝑍,𝑛,𝑦,𝑧   𝑤,𝐹   𝑤,𝐺   𝐻,𝑝,𝑤   𝑍,𝑝   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻,𝑚,𝑛   𝜑,𝑘,𝑦,𝑧   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑤,𝑝)   𝐹(𝑦,𝑛,𝑝)   𝐺(𝑧,𝑚,𝑝)   𝑀(𝑦,𝑧,𝑤,𝑘,𝑚,𝑛,𝑝)   𝑍(𝑤)

Proof of Theorem ntrivcvgmul
StepHypRef Expression
1 ntrivcvgmul.3 . . 3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 ntrivcvgmul.5 . . 3 (𝜑 → ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))
3 eeanv 2327 . . . . 5 (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
432rexbii 3180 . . . 4 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ ∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
5 reeanv 3245 . . . 4 (∃𝑛𝑍𝑚𝑍 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
64, 5bitri 264 . . 3 (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) ↔ (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ ∃𝑚𝑍𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
71, 2, 6sylanbrc 701 . 2 (𝜑 → ∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)))
8 ntrivcvgmul.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
9 uzssz 11899 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
108, 9eqsstri 3776 . . . . . . . 8 𝑍 ⊆ ℤ
11 simp2l 1242 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛𝑍)
1210, 11sseldi 3742 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℤ)
1312zred 11674 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑛 ∈ ℝ)
14 simp2r 1243 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚𝑍)
1510, 14sseldi 3742 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℤ)
1615zred 11674 . . . . . 6 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑚 ∈ ℝ)
17 simpl2l 1283 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑍)
18 simpl2r 1285 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑚𝑍)
19 simp3ll 1311 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑦 ≠ 0)
2019adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑦 ≠ 0)
21 simp3rl 1313 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → 𝑧 ≠ 0)
2221adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑧 ≠ 0)
23 simp3lr 1312 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑛( · , 𝐹) ⇝ 𝑦)
2423adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑛( · , 𝐹) ⇝ 𝑦)
25 simp3rr 1314 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → seq𝑚( · , 𝐺) ⇝ 𝑧)
2625adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → seq𝑚( · , 𝐺) ⇝ 𝑧)
27 simpl1 1228 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝜑)
28 ntrivcvgmul.4 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2927, 28sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
30 ntrivcvgmul.6 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3127, 30sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
32 simpr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → 𝑛𝑚)
33 ntrivcvgmul.7 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
3427, 33sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
358, 17, 18, 20, 22, 24, 26, 29, 31, 32, 34ntrivcvgmullem 14832 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑛𝑚) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
36 simpl2r 1285 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑍)
37 simpl2l 1283 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑛𝑍)
3821adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑧 ≠ 0)
3919adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑦 ≠ 0)
4025adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑚( · , 𝐺) ⇝ 𝑧)
4123adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → seq𝑛( · , 𝐹) ⇝ 𝑦)
42 simpl1 1228 . . . . . . . 8 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝜑)
4342, 30sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
4442, 28sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
45 simpr 479 . . . . . . 7 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → 𝑚𝑛)
4628, 30mulcomd 10253 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐺𝑘) · (𝐹𝑘)))
4733, 46eqtrd 2794 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
4842, 47sylan 489 . . . . . . 7 ((((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) ∧ 𝑘𝑍) → (𝐻𝑘) = ((𝐺𝑘) · (𝐹𝑘)))
498, 36, 37, 38, 39, 40, 41, 43, 44, 45, 48ntrivcvgmullem 14832 . . . . . 6 (((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) ∧ 𝑚𝑛) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
5013, 16, 35, 49lecasei 10335 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑚𝑍) ∧ ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧))) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
51503expia 1115 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5251exlimdvv 2011 . . 3 ((𝜑 ∧ (𝑛𝑍𝑚𝑍)) → (∃𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
5352rexlimdvva 3176 . 2 (𝜑 → (∃𝑛𝑍𝑚𝑍𝑦𝑧((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤)))
547, 53mpd 15 1 (𝜑 → ∃𝑝𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑝( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128   · cmul 10133  cle 10267  cz 11569  cuz 11879  seqcseq 12995  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418
This theorem is referenced by:  iprodmul  14933
  Copyright terms: Public domain W3C validator