MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvg Structured version   Visualization version   GIF version

Theorem ntrivcvg 14848
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1 𝑍 = (ℤ𝑀)
ntrivcvg.2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvg.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvg (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹,𝑛,𝑦   𝜑,𝑘,𝑦   𝑘,𝑀,𝑛,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑦
Allowed substitution hint:   𝑍(𝑛)

Proof of Theorem ntrivcvg
StepHypRef Expression
1 ntrivcvg.2 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 uzm1 11931 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
3 ntrivcvg.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
42, 3eleq2s 2857 . . . . . . . 8 (𝑛𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
54ad2antlr 765 . . . . . . 7 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
6 seqeq1 13018 . . . . . . . . . . 11 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
76breq1d 4814 . . . . . . . . . 10 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
8 seqex 13017 . . . . . . . . . . 11 seq𝑀( · , 𝐹) ∈ V
9 vex 3343 . . . . . . . . . . 11 𝑦 ∈ V
108, 9breldm 5484 . . . . . . . . . 10 (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
117, 10syl6bi 243 . . . . . . . . 9 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
1211adantld 484 . . . . . . . 8 (𝑛 = 𝑀 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
13 simplr 809 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍)
14 ntrivcvg.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514adantlr 753 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1615adantlr 753 . . . . . . . . . . . . . 14 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1716adantlr 753 . . . . . . . . . . . . 13 (((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 uzssz 11919 . . . . . . . . . . . . . . . . . . . 20 (ℤ𝑀) ⊆ ℤ
193, 18eqsstri 3776 . . . . . . . . . . . . . . . . . . 19 𝑍 ⊆ ℤ
20 simplr 809 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛𝑍)
2119, 20sseldi 3742 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ)
2221zcnd 11695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ)
23 1cnd 10268 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ)
2422, 23npcand 10608 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛)
2524seqeq1d 13021 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹))
2625breq1d 4814 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦))
2726biimpar 503 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦)
283, 13, 17, 27clim2prod 14839 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦))
29 ovex 6842 . . . . . . . . . . . . 13 ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ V
308, 29breldm 5484 . . . . . . . . . . . 12 (seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3128, 30syl 17 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3231an32s 881 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3332expcom 450 . . . . . . . . 9 ((𝑛 − 1) ∈ 𝑍 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
343eqcomi 2769 . . . . . . . . 9 (ℤ𝑀) = 𝑍
3533, 34eleq2s 2857 . . . . . . . 8 ((𝑛 − 1) ∈ (ℤ𝑀) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3612, 35jaoi 393 . . . . . . 7 ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
375, 36mpcom 38 . . . . . 6 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3837ex 449 . . . . 5 ((𝜑𝑛𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3938adantld 484 . . . 4 ((𝜑𝑛𝑍) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4039exlimdv 2010 . . 3 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4140rexlimdva 3169 . 2 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
421, 41mpd 15 1 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1632  wex 1853  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  dom cdm 5266  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  cmin 10478  cz 11589  cuz 11899  seqcseq 13015  cli 14434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438
This theorem is referenced by:  iprodclim2  14949  iprodcl  14951
  Copyright terms: Public domain W3C validator