![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrelmap | Structured version Visualization version GIF version |
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrelmap | ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
3 | 1, 2 | ntrf2 38841 | . 2 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
4 | 1 | topopn 20834 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | pwexg 4955 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
7 | 6, 6 | elmapd 7988 | . 2 ⊢ (𝐽 ∈ Top → (𝐼 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋) ↔ 𝐼:𝒫 𝑋⟶𝒫 𝑋)) |
8 | 3, 7 | mpbird 247 | 1 ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 Vcvv 3304 𝒫 cpw 4266 ∪ cuni 4544 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ↑𝑚 cmap 7974 Topctop 20821 intcnt 20944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-map 7976 df-top 20822 df-topon 20839 df-ntr 20947 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |