![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsneine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclslem0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrclsneine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) | |
2 | 1 | eleq2d 2716 | . . 3 ⊢ (𝑠 = 𝑡 → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑋 ∈ (𝐼‘𝑡))) |
3 | 2 | cbvrexv 3202 | . 2 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡)) |
4 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
5 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
6 | 4, 5 | ntrclsrcomplex 38650 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
8 | 4, 5 | ntrclsrcomplex 38650 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
10 | difeq2 3755 | . . . . . 6 ⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
12 | elpwi 4201 | . . . . . . 7 ⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) | |
13 | dfss4 3891 | . . . . . . 7 ⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) | |
14 | 12, 13 | sylib 208 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
15 | 14 | ad2antlr 763 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
16 | 11, 15 | eqtr2d 2686 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → 𝑡 = (𝐵 ∖ 𝑠)) |
17 | 9, 16 | rspcedeq2vd 3350 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
18 | fveq2 6229 | . . . . . 6 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) | |
19 | 18 | eleq2d 2716 | . . . . 5 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
20 | 19 | 3ad2ant3 1104 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
21 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
22 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾) |
23 | ntrclslem0.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
25 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
26 | 21, 4, 22, 24, 25 | ntrclselnel2 38673 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
27 | 26 | 3adant3 1101 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
28 | 20, 27 | bitrd 268 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
29 | 7, 17, 28 | rexxfrd2 4915 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
30 | 3, 29 | syl5bb 272 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 𝒫 cpw 4191 class class class wbr 4685 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 |
This theorem is referenced by: ntrclsneine0 38680 |
Copyright terms: Public domain | W3C validator |