![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclscls00 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclscls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . . . 6 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsfv1 38879 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
5 | 4 | fveq1d 6335 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐾‘∅)) |
6 | 2, 3 | ntrclsbex 38858 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | 1, 2, 3 | ntrclsiex 38877 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
8 | eqid 2771 | . . . . 5 ⊢ (𝐷‘𝐼) = (𝐷‘𝐼) | |
9 | 0elpw 4966 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐵 | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
11 | eqid 2771 | . . . . 5 ⊢ ((𝐷‘𝐼)‘∅) = ((𝐷‘𝐼)‘∅) | |
12 | 1, 2, 6, 7, 8, 10, 11 | dssmapfv3d 38839 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
13 | 5, 12 | eqtr3d 2807 | . . 3 ⊢ (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
14 | dif0 4098 | . . . . . . 7 ⊢ (𝐵 ∖ ∅) = 𝐵 | |
15 | 14 | fveq2i 6336 | . . . . . 6 ⊢ (𝐼‘(𝐵 ∖ ∅)) = (𝐼‘𝐵) |
16 | id 22 | . . . . . 6 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘𝐵) = 𝐵) | |
17 | 15, 16 | syl5eq 2817 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵) |
18 | 17 | difeq2d 3879 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵 ∖ 𝐵)) |
19 | difid 4096 | . . . 4 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
20 | 18, 19 | syl6eq 2821 | . . 3 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅) |
21 | 13, 20 | sylan9eq 2825 | . 2 ⊢ ((𝜑 ∧ (𝐼‘𝐵) = 𝐵) → (𝐾‘∅) = ∅) |
22 | pwidg 4313 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
23 | 6, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
24 | 1, 2, 3, 23 | ntrclsfv 38883 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵)))) |
25 | 19 | fveq2i 6336 | . . . . . 6 ⊢ (𝐾‘(𝐵 ∖ 𝐵)) = (𝐾‘∅) |
26 | id 22 | . . . . . 6 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅) | |
27 | 25, 26 | syl5eq 2817 | . . . . 5 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘(𝐵 ∖ 𝐵)) = ∅) |
28 | 27 | difeq2d 3879 | . . . 4 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = (𝐵 ∖ ∅)) |
29 | 28, 14 | syl6eq 2821 | . . 3 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = 𝐵) |
30 | 24, 29 | sylan9eq 2825 | . 2 ⊢ ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼‘𝐵) = 𝐵) |
31 | 21, 30 | impbida 802 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∖ cdif 3720 ∅c0 4063 𝒫 cpw 4298 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 ↑𝑚 cmap 8013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-map 8015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |