MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsmallnq Structured version   Visualization version   GIF version

Theorem nsmallnq 9837
Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nsmallnq (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nsmallnq
StepHypRef Expression
1 halfnq 9836 . 2 (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
2 eleq1a 2725 . . . . 5 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 +Q 𝑥) ∈ Q))
3 addnqf 9808 . . . . . . . 8 +Q :(Q × Q)⟶Q
43fdmi 6090 . . . . . . 7 dom +Q = (Q × Q)
5 0nnq 9784 . . . . . . 7 ¬ ∅ ∈ Q
64, 5ndmovrcl 6862 . . . . . 6 ((𝑥 +Q 𝑥) ∈ Q → (𝑥Q𝑥Q))
7 ltaddnq 9834 . . . . . 6 ((𝑥Q𝑥Q) → 𝑥 <Q (𝑥 +Q 𝑥))
86, 7syl 17 . . . . 5 ((𝑥 +Q 𝑥) ∈ Q𝑥 <Q (𝑥 +Q 𝑥))
92, 8syl6 35 . . . 4 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴𝑥 <Q (𝑥 +Q 𝑥)))
10 breq2 4689 . . . 4 ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑥) ↔ 𝑥 <Q 𝐴))
119, 10mpbidi 231 . . 3 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴𝑥 <Q 𝐴))
1211eximdv 1886 . 2 (𝐴Q → (∃𝑥(𝑥 +Q 𝑥) = 𝐴 → ∃𝑥 𝑥 <Q 𝐴))
131, 12mpd 15 1 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030   class class class wbr 4685   × cxp 5141  (class class class)co 6690  Qcnq 9712   +Q cplq 9715   <Q cltq 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ni 9732  df-pli 9733  df-mi 9734  df-lti 9735  df-plpq 9768  df-mpq 9769  df-ltpq 9770  df-enq 9771  df-nq 9772  df-erq 9773  df-plq 9774  df-mq 9775  df-1nq 9776  df-rq 9777  df-ltnq 9778
This theorem is referenced by:  ltbtwnnq  9838  nqpr  9874  reclem2pr  9908
  Copyright terms: Public domain W3C validator