MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 17848
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2761 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2761 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 17845 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 478 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2140  wral 3051  cfv 6050  (class class class)co 6815  Basecbs 16080  +gcplusg 16164  SubGrpcsubg 17810  NrmSGrpcnsg 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fv 6058  df-ov 6818  df-subg 17813  df-nsg 17814
This theorem is referenced by:  nsgconj  17849  isnsg3  17850  eqgcpbl  17870  qusgrp  17871  quseccl  17872  qusadd  17873  qus0  17874  qusinv  17875  qussub  17876  ghmnsgima  17906  ghmnsgpreima  17907  conjnsg  17918  qusghm  17919  sylow3lem4  18266  clsnsg  22135  qustgpopn  22145  qustgphaus  22148
  Copyright terms: Public domain W3C validator