MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Structured version   Visualization version   GIF version

Theorem nrmsep 21384
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmtop 21363 . . . . . 6 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
21ad2antrr 764 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐽 ∈ Top)
3 elssuni 4620 . . . . . 6 (𝑥𝐽𝑥 𝐽)
43ad2antrl 766 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 𝐽)
5 eqid 2761 . . . . . 6 𝐽 = 𝐽
65clscld 21074 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
72, 4, 6syl2anc 696 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
85cldopn 21058 . . . 4 (((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
97, 8syl 17 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽)
10 simprrl 823 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐶𝑥)
11 incom 3949 . . . . 5 (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = (((cls‘𝐽)‘𝑥) ∩ 𝐷)
12 simprrr 824 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1311, 12syl5eq 2807 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅)
14 simplr2 1263 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ∈ (Clsd‘𝐽))
155cldss 21056 . . . . 5 (𝐷 ∈ (Clsd‘𝐽) → 𝐷 𝐽)
16 reldisj 4164 . . . . 5 (𝐷 𝐽 → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1714, 15, 163syl 18 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ((𝐷 ∩ ((cls‘𝐽)‘𝑥)) = ∅ ↔ 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
1813, 17mpbid 222 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)))
195sscls 21083 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
202, 4, 19syl2anc 696 . . . . 5 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
21 ssrin 3982 . . . . 5 (𝑥 ⊆ ((cls‘𝐽)‘𝑥) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
2220, 21syl 17 . . . 4 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
23 disjdif 4185 . . . 4 (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅
24 sseq0 4119 . . . 4 (((𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ⊆ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) ∧ (((cls‘𝐽)‘𝑥) ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
2522, 23, 24sylancl 697 . . 3 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)
26 sseq2 3769 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝐷𝑦𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
27 ineq2 3952 . . . . . 6 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → (𝑥𝑦) = (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))))
2827eqeq1d 2763 . . . . 5 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝑥𝑦) = ∅ ↔ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅))
2926, 283anbi23d 1551 . . . 4 (𝑦 = ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) → ((𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)))
3029rspcev 3450 . . 3 ((( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∈ 𝐽 ∧ (𝐶𝑥𝐷 ⊆ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥)) ∧ (𝑥 ∩ ( 𝐽 ∖ ((cls‘𝐽)‘𝑥))) = ∅)) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
319, 10, 18, 25, 30syl13anc 1479 . 2 (((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) ∧ (𝑥𝐽 ∧ (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))) → ∃𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
32 nrmsep2 21383 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
3331, 32reximddv 3157 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wrex 3052  cdif 3713  cin 3715  wss 3716  c0 4059   cuni 4589  cfv 6050  Topctop 20921  Clsdccld 21043  clsccl 21045  Nrmcnrm 21337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-top 20922  df-cld 21046  df-cls 21048  df-nrm 21344
This theorem is referenced by:  isnrm3  21386
  Copyright terms: Public domain W3C validator